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ABSTRACT 
 

High quality, thick (~100µm), low doped and low defect density SiC epitaxial 

films are essential for high voltage (blocking voltage >10kV), light, compact and reliable 

next generation power devices. One of the significant challenges in obtaining high quality 

thick SiC epitaxial films is to restrict/eliminate the Si gas-phase nucleation or aerosol 

formation during growth. The generated aerosol particles adversely influence growth by 

reducing the growth rate due to precursor losses, and also affect crystal quality, since the 

Si droplets are carried to the crystal growth surface. Moreover, liquid aerosol particles 

adhere to the various reactor parts (parasitic deposition), and contribute to their severe 

degradation during epitaxial growth. These parasitic depositions are generally loosely 

bound, and can be carried to the growth surface during growth as particulates, resulting in 

degradation of crystal quality by introducing defects in the growing epitaxial layers. The 

aforesaid condition is specifically severe at higher precursor gas flow rates or in long 

duration growth required to achieve high quality thick epitaxy since parasitic deposition 

and related particulate formation are also increased at these growth conditions. At this 

parasitic deposition enhanced condition, the cost of growth is also expected to increase 

due to frequent replacement of degraded reactor parts. Hence, cost effective, high quality 

thick epitaxy is not achievable until the particle generation in the reactor is suppressed 

effectively in high temperature SiC CVD. To investigate the critical issues of parasitic 

deposition and nucleation related particle generation, intensive comparative study was 



www.manaraa.com

 

vii 

performed for the first time for different conventional silane and chloro-silane gases. 

Based on the study of these precursors, a novel Si precursor gas tetrafluorosilane (SiF4) 

was proposed to be a superior Si precursor gas specifically suitable for high temperature 

SiC CVD. Initially, SiF4 is compared to DCS without any propane addition during 

growth. It was found that without propane SiF4 with only hydrogen, no Si deposition 

takes place in the reactor (only etches the SiC), whereas DCS deposits severe Si on the 

surface making the reactor parts unusable. The ability of SiF4 not to deposit Si in the 

reactor is unique and found to be very useful to achieve high quality SiC epitaxy at high 

temperatures in the cleanest possible growth environment. The chemistry of SiF4 gas 

precursor is utilized to eliminate Si gas phase nucleation and Si parasitic deposition 

during silicon carbide (SiC) epitaxial growth, otherwise unachievable in similar growth 

conditions using conventional silane (SiH4) and dichlorosilane (SiCl2H2/DCS) precursors. 

Higher Si-F bond strength (565 kJ/mol) in SiF4 prevents early gas decomposition and Si 

cluster formation, essential for high temperature SiC CVD, and yet enables growth of 

high quality epitaxy in an improved particulate suppressed growth condition. High 

quality, thick 4H-SiC epilayers >100 um have been demonstrated using SiF4 with 

excellent surface morphology, polytype uniformity, crystallinity and low defect density 

needed for reliable high power devices. 
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CHAPTER 1  

SILICON CARBIDE 

In this chapter, fundamental of silicon carbide (SiC) as an electronic material and 

its challenges in term of epitaxial growth will be explained. A 3D CAD model is used to 

elucidate various basic crystallographic terminologies through new imageries, essential 

for the understanding of silicon carbide crystal and its epitaxial growth. Growth rate 

dependency is predicted for different off cuts based on these geometric models. 

Conditions for homogeneous growth are explained. Various primary defects related to 

SiC epitaxy is discussed in this chapter. Propagation and conversion of Basal Plane 

Dislocation is discussed and it is shown that BPD aligned to the off cut direction has the 

greatest chance to propagate into the epitaxial layer. Finally, some of the important 

morphological defects and their origin during crystal growth are introduced in this 

chapter. We believe this chapter will be a good starting point for the beginner researchers 

in the field of SiC epitaxy and may also be beneficial for the experienced researcher in 

the field to review their basic concepts on SiC crystal and epitaxial growth. 

1.1 INTRODUCTION 

 

There is a continuous effort in modern engineering technologies to reduce the size 

of the electronic devices for the convenience of their use. Electronics used in our 

everyday life are already astonishingly compact and light compared to the technology,
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which was available 10 years ago. Compact, light weight, cell phone, PDA and many 

other pocket gadgets are using computational speed in the range of GHz frequency with 

enormous amount of memories in the range of giga bytes (GBs). Most of the appliances 

in our everyday life operate in low power range, usually around 100 volts and few 

amperes. At this operating voltage, it is easier to make the electronics smaller since they 

operate at small power and lower temperatures. Voltage domain in the regime outside of 

our households is much higher, and making compact and light weight electronic devices 

in that high voltage regime is extremely challenging. Heavy machineries used in the 

industries operate at a much higher voltages usually in the range of kVs. The voltage used 

in the national grid is much higher in the range of 10kVs to 100s of kVs. After the power 

generation in a power plant, voltage in the grids stepped up much higher in the order of 

100s kVs in order to reduce current induced joule heating losses during long distance 

transmission. These high voltage power sources are stepped down for commercial or 

household applications. 

During the transmission and voltage conditioning process (e.g. step up, step 

down) energy is lost. Each year about 7% of the electric energy is lost only during 

transmission and distribution in US (www.eia.gov/tools/faqs/faq.cfm?id=105&t=3). The 

loss of energy will be much bigger if the losses at the customer end are also included (e.g. 

factories, houses, offices etc.). The picture of energy losses will be enormous and much 

worrisome if the total losses in the world are considered. These energy losses not only 

cost a huge amount of money every year but also affect the global climate of the world. 

 The USA produced about 4,106 billion kilowatt-hours of electricity in 2011. 

Among this electricity produced, 68% was generated from the fossil fuel 
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(www.eia.gov/tools/faqs/faq.cfm?id=427&t=3). These fossil fuels have effect on emitting 

green house gases (e.g. CO2, CH4), thus increasing the carbon footprint (Laurence A 

Write, 2011) and facilitating global warming. Hence, reducing the power loss of the 

electric system does not only reduce the cost but also helps to reduce environmental 

pollution for a better world.  

 Currently, the electric grid system is built on 100 years old infrastructure where 

the supply is one directional to the customer. In this system the power system (e.g. power 

plant) cannot update itself to generate power based on the necessity of the consumer 

usage. To make the electricity distribution and power consumption much more managed 

to reduce losses and utilize them more efficiently, an intelligent grid system is required in 

near future which is termed as ‘Smart Grid’.  According to DOE (Department of Energy, 

US), five technologies will mainly drive the Smart Grid of the future. They are 

(www.energy.gov):  “ 

 Integrated communications, connecting components to open architecture for real-

time information and control, allowing every part of the grid to both “talk” and 

“listen”. 

 Sensing and measurement technologies, to support faster and more accurate 

response, such as remote monitoring, time-of-use pricing and demand-side 

management 

 Advanced components, to apply the latest research in superconductivity, storage, 

power electronics and diagnostics 

 Advanced control methods, to monitor essential components, enabling rapid 

diagnosis and precise solutions appropriate to any event 
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 Improved interfaces and decision support, to amplify human decision making, 

transforming grid operators and mangers quite literally into visionaries when it 

comes seeing into their systems ” 

In the smart grid system, the power supply to the clients are not one directional, rather 

both the central system and the appliances can interact and find the optimal power 

management for the efficient use of energy with minimum wastage. This process requires 

much increased control over high voltage electric grid system at every possible node so 

that they can be switched on/off or conditioned (e.g. voltage conversion etc.) more 

efficiently and frequently. This is not possible with existing bulk transformer based 

voltage conversion or bulky mechanical switch based switching system. To realize the 

proposed smart grid system semiconductor based compact switching and power 

conditioning is essential. 

It can be understood easily that to realize five primary goals of Smart Grid 

technology, in future, huge amount of electronic circuitry is required which will be able 

to operate reliably at a much higher voltage than we use in our households, which is 

beyond the handling capacity of the current silicon based technologies.  

Making small, compact, light weight devices, which can operate at high voltage, 

is not only highly demanded for Smart Grid systems but they are also essential for ships, 

air carriers, automobiles etc. The fuel cost of the carrier is directly related to the weight of 

the carrier and hence the total weight of the carrier should be as less as possible. With the 

current silicon based electronics, huge, bulky cooling units are required, which increases 

the weight of the carrier significantly and thus also increases the cost. There are only few 
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electronic materials that can be operated in the aforesaid high voltage (or power) regime, 

at least theoretically, and certainly silicon carbide is the leading material of consideration. 

Silicon carbide is one of the most promising new semiconductor materials for the 

aforesaid applications. Silicon carbide is the choice of making high voltage, high power 

electronic applications due to its outstanding properties such as high band gap, high 

thermal conductivity, high breakdown electric field, low intrinsic carrier concentration 

etc. (Table 1.1). Due to these properties, SiC electronic devices can be made compact, 

light weight and yet operable at high voltage and high current condition. Despite these 

promising properties, SiC is not yet a popular material for device fabrication due to the 

difficulties to produce high quality single crystal materials. Though true exploitation of 

SiCs unique properties in electronic devices should excel the performance of Si based 

power devices in the current market, the primary goal of SiC material for electronic 

devices is not reached yet. Further, few SiC power devices present in the market are still 

much expensive than the Si based power devices. Despite reports on devices in various 

literatures over 10KV (Sundaresan, Sturdevant, Marripelly, Lieser, & Singh, 2012; Zhao, 

Alexandrov, & Li, 2003)and high temperature applications, commercially available 

product is still in the range of 1.2 KV and at ~100 - 175°C (www.cree.com/news-and-

events/cree-news/press-releases/2013/march/2nd-gen-mosfet; 

www.genesicsemi.com/index.php/news/03-05-13)only. When a product is 

commercialized, the rating for the product (e.g. voltage current relation) must be strictly 

maintained and it should be highly reliable for day to day operation since human lives 

will be depending on these devices (e.g. uninterrupted power supply to houses, hospitals, 

schools, vehicles etc). The meaning of reliability is that the rating of an electronic device 
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will be guaranteed over a certain period time within an acceptable tolerance limit. Silicon 

carbide devices cannot ensure reliability for high voltage application until high quality 

SiC materials are available. Despite high demand for high power electronics, SiC based 

devices will not be sold like hot cakes for Smart Grids, ships, air carriers or automobiles 

until the reliability of the devices is guaranteed by reducing the defects in the material. 

Defects in electronic materials result in uncertainty in the device operation 

rendering unpredictable change of the behavior of the devices over time and even 

unexpected failure. In nature, ‘defects’ (in biological organisms) are well handled which 

is in fact create diversity. Perhaps the term ‘defect’ does not even exist from nature’s 

perspective. However, compared to the biological world in nature, human electronic 

technology is still primitive. The operation of the electronic devices has to be predicted 

within a ‘well defined’ regime governed by the crystal structure. It is extremely difficult 

for us to predict the behavior of the electronic devices if the periodicity of the crystal (i.e. 

the simplicity) is not preserved.  In that consideration, for man-made electronic world, the 

crystal should be ‘defect’ free so that the outcome of the devices can be well defined for 

guaranteed reliability. The world we live now is based on electronic technologies. Hence 

scientists constantly strive to explore new materials for electronics and improve their 

crystal quality by reducing defects in them to uncover more hidden power in the nature 

for the benefits of human lives. 
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Table 1.1 Properties of various semiconductor materials
a 

Property 
Si GaAs 4H-SiC 6H-SiC 

3C-

SiC 

2H- 

GaN 

Bandgap (eV) 
1.1 1.42 3.2 3.0 2.3 3.4 

Relative dielectric constant 
11.9 13.1 9.7 9.7 9.7 9.5 

Breakdown field (MV cm
-1

) 

@ND = 10
17

 cm
-3

 

0.6 0.6 3 3 1.8 2-3 

Thermal Conductivity 

(W/cm/K) 

1.5 0.5 3-5 3-5 3-5 1.3 

Intrinsic carrier 

concentration  

(cm
-3

)
 

10
10

 1.8 X 10
6
 ~4 x 10

-8  b
 ~10

-6  b
 ~10 ~10

-10
 

Electron mobility 

@ND = 10
16

 cm
-3

 

 

1200 6500 

║ c-axis 800 

┴ c-axis 800 

║ c-axis 60 

┴ c-axis 400 

750 900 

Hole Mobility 

@NA = 10
16

 cm
-3

 

420 320 115 90 40 200 

Saturated electron velocity 

(10
7
 cms

-1
) 

1.0 1.2 2 2 2.5 2.5 

a 
Adapted from  (Neudeck, 2006) 

b
 calculated using Nc (4H) = 3.25 x 10

15
T

3/2
, Nv (4H) = 4.8 x 10

15
T

3/2
  

and Nc (4H) = 3.25 x 10
15

T
3/2

, Nv (4H) = 4.8 x 10
15

T
3/2

 from the formula 

ni=               

                             

 

1.2 PROPERTIES OF SIC  

 

Before we proceed to the discussion of the properties of SiC in comparison to 

other semiconductor materials, we will discuss some basic semiconductor fundamentals 

which determine the high temperature and high voltage operability of semiconductor 

materials. 

Considering the semiconductor is pure (no dopant), at a certain temperature, there will be 

a small part of the covalent electrons liberated from the bonds due to the thermal energy 

present (kT) and these electrons will become conduction electrons. These carriers 
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generated due to thermal energy are called intrinsic carriers. At room temperature, 

thermal energy is 0.026eV or 26meV which is considerably lower than the bandgap of 

the common electronic materials (e.g. bandgap of Si and 4H-SiC are 1.1 and 3.2 

respectively). Bandgap energy of Si is 42 times higher than the thermal energy at room 

temperature whereas 123 times higher than SiC bandgap energy. As a result there will be 

much lower intrinsic carrier concentration present for SiC compared to Si at room 

temperature. The intrinsic carrier concentration of a semiconductor material decreases 

exponentially with bandgap (Pearton, 1997) by the following relation,  

     
                               (1.1) 

where NC is the effective density of states. For regular electronic applications, dopant 

density determines the majority carrier concentration, whereas intrinsic carrier 

concentration will essentially be the minority carrier concentration. An increased 

minority carrier or intrinsic carrier concentration will increase the reverse bias leakage 

current of the device.   Hence as the temperature increases, intrinsic carrier concentration 

will increase (see temperature relation in equation 1) and also the leakage current will 

increase. Higher bandgap of SiC and associated lower intrinsic carrier concentration 

(Table 1.1) gives SiC of its theoretical operational limit to 800°C compared to only 

300°C of Si (Neudeck, 2006) . 

There is another important consideration for high temperature operability which 

makes SiC to be unique compared to other semiconductor material. Thermal conductivity 

is the property of material to conduct heat (W/cm/K). During operation (i.e. resistive 

heating due to high current flow), it is necessary to efficiently conduct the thermal energy 

to the surrounding (e.g. heat sink or air) before it destroys the device. Localized heat in a 
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device is needed to be spread over the whole device surface and to the surrounding faster 

to prevent localized damage in an integrated circuit chip. This is an extremely important 

consideration for high power devices due to their high current operation and related heat 

generation. A much higher thermal conductivity (~5 W/cm/K) of SiC makes it 

unparalleled for high temperature operation in terms of heat management than other 

common semiconductor materials.  

The second consideration for high power electronics is that how much voltage can 

be applied across a material without rupturing it. Maximum voltage that can be applied 

across a material depends on its breakdown electric field (V/cm). When electric field is 

applied across a semiconductor material, above a critical value, the material loses its 

ability to withstand or resist the force created by the electric field and as a result it 

raptures. As an analogy, similar phenomenon occurs during lightening spark on the sky 

when electric field exceeds the breakdown electric field of the air. Higher breakdown 

electric field is essential for high voltage operation of a material. Breakdown electric field 

of SiC is about 10 times higher than the breakdown electric field of Si indicates that 

similar thickness of SiC should block much higher voltage than Si. Breakdown voltage of 

a semiconductor rectifier depends on the breakdown or critical electric (Ecrit) field as 

below: 

                  
       

  

   
                                                               (1.2) 

As a result of high breakdown field and lower intrinsic carrier concentration, 

using SiC, the blocking voltage region can be made 10 times thinner and 10 times heavier 

doped for Si, thus giving a 100 fold benefit in reduced resistance of the blocking region 

for the same voltage rating (Bhatnagar & Baliga, 1993).  
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Despite the aforesaid advantage of SiC for high temperature operation, mobility 

of SiC is not very promising compared to GaAs, GaN or Si (Table 1.1) and hence SiC 

cannot compete for high speed devices with GaAs, GaN and may not be a choice for high 

frequency devices. It is to be mentioned that electron mobility of 6H SiC is isotropic 

unlike that of 4H-SiC, and is much lower to the direction parallel to c-axis (Table 1.1). 

Hence vertical device with 6H-SiC is not preferable and hence 4H-SiC triumphs over 6H-

SiC for the choice of devices. Currently 4H-SiC draws the primary interest in the 

research community.  

Gallium Nitride (GaN) is the strongest competitor for high voltage and high 

temperature applications in the field due to its high bandgap, low intrinsic carrier 

concentration, high breakdown field and higher mobility and saturated electron velocity. 

However, the thermal conductivity of GaN is lower compared to SiC and GaN may not 

be the best choice for high temperature devices in terms of heat management. However, 

the main drawback of commercialization of GaN high power devices is considered to be 

the lack of its substrates availability in the market. GaN substrates are very expensive. 

Currently a six inch wafer of Si is only about $25, whereas, only a two inch GaN wafer 

costs about $1900 (www.compoundsemiconductor.net/csc/indepth-

details/19735741/GaN-substrates-to-challenge-silico.html) (on the other hand, for 

comparison, SiC substrate will cost around few hundred dollars for a 2” wafer). To avoid 

this exorbitant cost, GaN epilayers are usually grown over sapphire, SiC or Si. As a 

result, interface mismatch related defects are created which increases the leakage current  

(www.compoundsemiconductor.net/csc/features-details/19734837/Exploiting-the-high-

temperature-promise-of-Si.html). However, GaN substrate technology is improving 
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rapidly. It is predicted that the price of GaN substrate will fall by 60% by the year 2020  

(www.compoundsemiconductor.net/csc/indepth-details/19735741/GaN-substrates-to-

challenge-silico.html). As GaN substrates are improved and become cheaper, it can be 

assumed that that the competition between SiC and GaN to be the choice high power 

electronic material will be much harder in near future unless SiC technology solves its 

critical challenges meanwhile. 

1.3 SIC CRYSTAL FUNDAMENTAL 

1.3.1 POLYTYPES 

About 200 known polytypes are found for Silicon carbide (Matsunami & Kimoto, 

1997). Different polytypes have different stacking sequences. To understand the SiC 

growth and related challenges it is essential to know its common polytypes in terms of 

stacking sequences, crystal directions, crystal planes etc. A crystal will behave differently 

from different directions. As an example, for 6H SiC, the mobility is different along 

different crystal directions (Neudeck, 2006). Crystal growth is different on different 

planes for growth rates, polytype replication (homogeneity) etc. To have a 

comprehensive understanding of growth related issues on different crystal planes we will 

first discuss about some important polytypes and their crystal structures for those 

polytypes which are very widely used in SiC technologies.  

Let us discuss what polytype is. If one hexagonal close pack layer (Stack-1) is 

stacked over another hexagonal closed pack layer (Stack-2) as in Figure 1.2, there are 

three different possibilities they can be stacked one over another. These positions are 

termed as A, B and C as shown in Figure 1.2. 
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Figure 1.1 Three possible stacking sequences of silicon carbide 

When SiC crystals are formed, the stacking order may take different sequences 

before they repeat. Hence, SiC crystals may have different properties despite the same 

atomic composition. This is called the polytypism. SiC polytypes are named based on the 

number of stacks before the sequence is repeated. Various common SiC polytypes, 2H, 

3C, 4H and 6H are shown using 3D modeling in Figure 1.3 These polytypes are shown 

from different perspectives as if they are viewed by the audience (or seen by the gas 

molecules during the growth) from different directions. The relative sizes of the atoms 

are maintained in this Figure and heights of the bi-layers are kept proportional to give the 

reader ‘a feel’ of viewing real SiC crystals. The polytypes stacking sequences can be seen 

easily by observing Figure 1.3(a) and Figure 1.3. (b). However, for the similar polytypes, 

it is not possible for the viewers to know the polytype by just merely  
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Figure 1.2 SiC polytypes seen from different directions. 

C 

Si 
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observing the c planes (from top or bottom) in <c> direction as shown in Figure 1.3(c) 

and Figure 1.3(d). Readers are advised to see various directions in the SiC crystal in the 

Appendix. 

Similarly, during the CVD growth, molecules ‘see’ the surface they approach the 

surface from different directions. Crystal growth on a c plane (or basal plane) can take 

any arbitrary polytype when gas molecules approach it as for us it is impossible to know 

the polytype from the c plane only (as Fig-3c and d). So, growth on a c-plane (0001) is 

highly unpredictable since it does not expose any template needed for polytype 

replication during growth. Homogeneous crystal is essential for devices and this problem 

can be solved by partially exposing the m planes to create a template for polytype 

imitation by cutting the original crystal boule at an angle which is called the off cut angle. 

Thus, to facilitate the homogeneous growth, steps are created by cutting the wafer at a 

certain angle and this is called step controlled epitaxy as described in (Matsunami & 

Kimoto, 1997) for silicon carbide epitaxy.  

1.3.2 STEP CONTROLLED EPITAXY 

To create the template for the imitation of the polytype during the crystal growth, 

it is essential to cut the crystal at an angle of usually 2°, 4°, 8°.  Wafers are usually 

produced by cutting at an angle towards a certain direction which is usually         

for SiC. Figure 1.4 shows the step sizes for different off cut angles. Using the 3D 

modeling software it was found that the step density will increase up to an off cut of 65.8 

degree and reach its maximum step density for 4H-SiC. It can be inferred that the crystal 

quality will be the best in term of polytype uniformity at this angle since for this off cut, a 

highest number of templates are present due to highest number of kinks. An enlarged  
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Figure 1.3 Step structure of SiC for various off cuts of 4H-SiC (towards       ) 

 

image of the kink, where the ideal growth should take place is shown in Figure 1.5. When 

off cut is increased further, step density is reduced again, however this time, the crystal 

4
o
 off 

cut 



www.manaraa.com

 

16 

 

plane on the surface changes. Step height is reduced and the surface of the terrace is not c 

plane anymore as seen for the off cuts of 82° and 86° in Figure

 
1.4.  

 

 

Figure 1.4 3D image of a kink produced due to off cut of a substrate (Si face). 

 

How a kink might be different than a terrace can be apparent by observing Figure 

1.5.  At kinks both Si and C dangling bonds are present whereas the terrace is only 

terminated either by Si or C. At the kink dangling bond from both C and Si are present 

and hence kinks are energetically more favorable for homogeneous growth. 

If the crystal is cut towards         direction, then the kink produced at the 

steps will look like Figure 1.6(a). On the other hand, if the crystal is cut towards <1100> 

direction, the kink will look like Figure 1.6(b). Even though in a perfect off cut, only a 

certain kind of steps Figure 1.6 (a) or (b) should exist, however,  practically, the off cut is 

not perfect and it is possible that both type of steps may present on the surface due to 
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mis-cut. At higher off cuts one type of step will be dominant with higher density than the 

other. On the other hand, for lower off cut substrates, especially for the vicinal on axis 

substrate, the density of both types of steps might be comparable in density and the 

growth may take in both directions (isotropic) rendering anomaly in the step flow growth. 

 

        

Figure 1.5 Kink shape for the off cut towards a)         and b) [1100] directions. 

 

1.4 GROWTH RATES ON DIFFERENT OFF CUT ANGLES 

Off cut substrates have a surface with c planes and m planes (Figure 1.4). The 

objective of the off cut is to provide template of the certain polytype to facilitate the 

homogeneous growth as discussed earlier. The activation energy required for the growth 

is very low at the kink (only 3 kcal/mol) compared to the higher activation energy 

required to grow on the terrace (20 kcal/mol) (Kimoto, Nishino, Yoo, & Matsunami, 

1993). Hence, kinks produced due to off cut as shown in Figure 1.5 have the highest 

sticking coefficient for the growth and kinks work like a perfect sink during the growth. 

Since, growth takes place (or should take place for homogenous growth) mainly at the 

kinks due to very low activation energy at kinks, hence growth rate will be proportional 

to the kink density on the surface. Kink density on the surface is a function of off cut 

angle as shown in Figure 1.4. We used the 3D modeling tool to count the step number for 

a) b) 
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a certain length for various off cut angles and plot them in Figure 1.7. The y-axis in 

Figure

 
1.7 is analogous to the step density or kink density indicating the growth 

efficiency or growth rate. Step increment is not linear to the increase of off cut and does 

not change for all off cut angles. The off cut angles where there is a change in step 

density is shown by dots in Figure 1.7. It can be seen in Figure 1.7 that the kink density 

increases rapidly until ~10° off cut almost linearly and then changes slowly at above. 

There is a very little variation of step density in the range of off cut angles shown as A 

and B in Figure 1.7. Step density starts decreasing again above 65.8° off cut. Though a 

higher off cut will increase the growth rate, later in this chapter we will show that a 

device killing defect, BPD density increases for higher off cut substrates which is 

undesirable. Hence, there is a dilemma in selecting the right off cut angle for the epitaxial 

growth. 

 

 

Figure 1.6 Modeled growth efficiency (qualitative indication of growth rate) as a function 

of off cut angles. 

 

1.5 GROWTH MECHANISM 

 

Growth on c plane (0001) is undesirable due to their tendency to form 3C 

polytype since it is the plane of (111) of a cubic crystal as well (Konstantinov, Hallin, 

A B 
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Pecz, Kordina, & Janzen, 1997)with a negligible lattice mismatch. 3C nucleation on the 

(0001) or c-plane and the possibility of forming 3C twins are visually depicted in Figure

 

1.8. As discussed earlier, the goal of cutting the substrate at a certain angle is to create the 

kinks where polytype sequence is exposed for imitation by the incoming gas molecules 

during the CVD process. However, c planes (terraces) on the surface as seen in Figure 1.4 

are still present. Hence, the possibility of 3C formation remains during the growth. In an 

ideal condition 3C growth on c plane (Figure 1.8) should be completely suppressed. 

 

      

Figure 1.7 a) Bottom (towards [0001]  x-ray view) of formed 3c on (0001) plane shows 

ABC stacking sequence of 3C on (0001) plane. b) Two possible sequences (twins) of 

formation of cubic crystal on (0001) planes of 4H off cut samples x. inclusion shows 

ABC sequence and y. inclusion shows ACB sequence. 

The quality of epitaxy in terms of morphological defects (often 3C inclusion 

related defects) for a given condition will depend on the terrace length. At lower off cut, 

terrace or c-plane (0001) as seen in Figure 1.4 are longer. When 3C is nucleated on these 

longer terraces (0001), 3C growth on the terrace will have an interaction to the step flow 

growth by creating obstruction. This is illustrated in Figure 1.9 which is self explanatory.  

 

 

x 

y 

Terrace 

Kink 
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Time t1 = just before the growth Time t2: Lateral growth starts. 3c growth 

initiated 

 
 

Time t3: Both 4H and 3C lateral growth Time t4: 3C grows in every direction 

 
 

Time t5: Initiation of other 3C Time t6: 3C growth expands and  included 

Figure 1.8 Step by step animation of a step flow growth and 3C inclusion during step 

flow growth. 3C growths are showing in hexagonal structure for ease of drawing. 
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Only lateral growth of 3C polytypes was shown in Figure 9. However c plane is also 

possible for vertical growth (towards [c]) for 3C growth (Figure 10), which will make the 

step flow growth process more complicated. 

 

Figure 1.9 Lateral and vertical 3C growth on a 4
o
 off cut terrace 

 

1.6 ETCHING PROCESS 

 

Etching is an essential part of the SiC epitaxial growth. An ideal etching condition 

will preserve the surface and should also be step mediated, taking place at the kinks. 

Unlike the growth towards         (if cut in this direction), the step flow during etching 

is towards [1120] direction. Similar like the growth, kinks has the higher reactivity for the 

etchant gas molecules since at the kink a complex arrangement of dangling bonds are 

present which are more reactive (please see Figure 1.5 for a better understanding of the 

atomic arrangement at the kink compared to the terrace). Hence the etching occurs more 

favorably at the kink and with a lateral movement than vertical. As an example, the ideal 

etching of the surface (shown in Fig-10) is elaborated step by step in Figure 1.11.  

Growth 

towards <c> 
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Time t1: Initial condition Time t2: The topmost cell is removed 

first since it has highest number of m-

planes exposed for reaction. 

  

Time t3: Lateral etching continues and the 

step edges moves towards [1120] direction 

Time t4: Any perturbation, scratch 

marks etc. will be flatten 

 

Figure 1.10 Step by step etching process of a SiC off cut surface. 

From the previous discussion of growth and etching described by Figure 1.9 and Figure 

1.11, we deduce the ideal conditions for homogeneous, step flow growth as following. 

1. Step flow growth cannot be obstructed by any 3C nucleation or particle 

obstruction.  

2. Absolutely no growth on c planes or terraces is ideal. 

3. Etching should be optimized to such a point that 3C nucleation is completely 

etched away but the growth at the kink is preserved. 

1.7 DEFECTS 

 

There are three main dislocation widely discussed in SiC epitaxy. They are, 

threading screw dislocations (TSD), threading edge dislocations (TED) and the basal 
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plane dislocations (BPD). The discussion these dislocations are commonly found in many 

elementary books related to crystal defects (Johannes & Julia R., 1964; W. T. Read, 

1953). These common defects are shown after KOH etching in Figure 1.12. Circular, or 

oval shapes are indicative of their directions in the crystal related to off cut. 

 

 

Figure 1.11 Various common SiC crystal defects delineated after KOH etching. 

Micropipe is a threading screw dislocation with a larger displacement. 

 

Different crystal dislocations have different direction in the crystal. Dislocations are 

the results of stress stored in the crystal due to deformation. The stress has a line along 

which it exerts displacement force in the crystal resulting in the dislocation. When the 

stress line is perpendicular to the dislocation line, then the dislocation is called screw 

dislocation. On the other hand when the stress line is along with the dislocation line then 

it is called an edge dislocation. On the other hand, any dislocation which lies in the basal 

plane (0001) is called a basal plane dislocation or BPD. 
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As epilayer is grown on substrate, it has the tendency to replicate the structure of the 

bulk which includes crystal imperfections as well. So, defect sites in the bulk are the 

primary sources of defects in the epilayer. Both screw and threading edge dislocations 

propagate perfectly to the epilayer from substrate, though basal plane dislocation mostly 

converts into threading edge dislocation  (Ha et al., 2002; Ohno et al., 2004).  Lower 

elastic energy of threading edge dislocation per unit area along the growth thickness is 

more preferable to form during the growth than forming the basal plane dislocation of 

higher elastic energy (Ha et al., 2002). That is why it is assumed that most of the BPDs 

convert in TED during epitaxial growth.  

 

 

 

 

 

 

Figure 1.12 Wastage of SiC material due to cutting at an angle towards         direction.  

 

Epilayer grown on on-axis substrate is prone to nucleation of different polytypes.  

As discussed earlier, this problem was solved by introducing step controlled epitaxial 

growth (Matsunami & Kimoto, 1997). It is easily understood from Figure 1.13 that higher 

the off cut angle, higher the amount of material will be wasted due to the cut. This is 

undesirable from manufacturers’ point of view since it will increase the cost of the 

material. Lower off cut angle as much as 2
o
 off cut is often preferred by the manufacturer 

to keep the price low.  

Bulk 
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1.8 FORMATION AND CONVERSION OF BPD 

 

 BPD is a device killing defect in epitaxial growth which is found to propagate in 

higher number from substrate to the epilayer for higher off cut angle.  It was found that 

for off axis samples, few of the BPDs are able to propagate through the epilayer and 

emerge on the surface and the rest of them convert into TED. A to B ratio in Figure1.13 

plays an important role to determine how the BPDs will propagate into the surface of 

epilayer. For a lower A to B ratio (lower off cut angle) it is energetically more favorable 

for BPDs to convert into TEDs (Ha et al., 2002). To the contrary, for a higher A to B 

ratio (or higher off cut angle) more BPDs can propagate into the surface. So, lower off 

cut angle is preferable over higher off cut angle in many ways. However higher density of 

some other defects as like as triangular defect,  inverted pyramid and step bunching are 

observed on the epilayer grown on lower off cut angle substrate. So, there might be two 

ways to eliminate BPD in SiC epitaxial growth. One might be to move to lower off cut 

angle by solving its related defects; this will solve both material wastage and BPD issues. 

The other solution might be to find an effective method to convert all the BPDs to TEDs 

during the epitaxial growth on higher off cut substrate.  However material wastage cannot 

be prevented by the second. 

The dislocation lines of BPDs lie on the (0001) plane.  For homoepitaxial growth, 

the wafer is often cut into 4
o
 or 8

o
 off cut angle towards         direction.  Due to this off 

cut, BPD lines intersect and emerge on the surface of the wafer (Figure 1.14). BPDs are 

propagated to the epilayers from these intersection points during the epilayer growth.  
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Figure 1.13 BPD lines intersects the surface due to the off cut angle 

In SiC PiN diodes, a BPD is split into two under the stress due to the current flow 

and Shockley type stacking faults (SSF) are generated at basal point dislocation sites in 

forward bias which greatly impairs the device performance. Most of the BPDs (70% to 

90%) convert into threading edge dislocations (BPD) during epilayer growth. This can be 

explained by Klapper and Küpper theory (Zhang & Sudarshan, 2005). The elastic energy 

per unit growth length for the defects propagating into the epilayer is given by 

 

 

W
E

cos                                                 
        Fig-13: Defect propa- 

    gation and 

    growth direction. 

 

Figure 1.14 Propagation and conversion of Basal Plane Dislocation (Zhang & Sudarshan, 

2005) 

Energetically it is more favorable for BPDs to propagate as a TED along with the 

epilayer growth direction (E direction in Figure 1.15).  So, for 8
o
 off cut substrates 70% 

to 90% of the BPDs convert to TEDs following this energetically easier direction.  

   WBPD 
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α 

WTE
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E 
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Substrate 



www.manaraa.com

 

27 

 

Solid

A

B

N
e

e
d

le
-1

Needle-2

Needle-3
C

 

Figure 1.15 A simple analogy to BPD propagation and conversion. 

The above is illustrated by a simple example shown in Figure 1.16. It is easily understood 

that it will be the easiest to pierce the solid by needle-1 towards direction A whereas it 

will be the hardest to penetrate it by needle-3 in direction C. Difficulty to pierce the 

material by needle-2 will be intermediate. They are equivalent to BPD direction in 90
o
 off 

cut, 0
o
 off cut (or on axis) and 8

o
 off cut respectively. However for a perfect on axis (0

o
 

off cut) the issue of conversion or propagation is irrelevant since no BPD line intersects 

the surface in this case. 

Until now, in this discussion, the direction of a BPD was considered in one-

dimensional perspective for simplicity but in reality their direction varies on a two 

dimensional plane (Figure 1.17).  

If we consider the real scenario in epitaxial growth in the light of above example, then 

1. Highest number of BPDs should propagate into the surface for 90
o
 off cut 

substrate (needle-1). 

2. No BPD should emerge on the surface in case of a ‘perfect’ on axis or 0
o
 off cut 

substrates (needle-3). 
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3. Most of the BPDs should convert into TEDs for 8
o
 off cut (needle-2) however 

some BPDs will just be able to propagate. Their ratio (propagation to conversion) 

will depend on the off cut angle. 

 

BPD-A

BPD-B

BPD-C

Off cut surface

<1120>

<1120>

A EDCB

B  a  s  a  l  
  P  l  

a  n  e

B  a  s  a  l    P  l  a  n  e

BPD-D

BPD-E

 

Figure 1.16 BPD propagation and conversion due to the variation of their directions. 

Now, let us analyze Fig 17. A basal plane has been shown on the off cut substrate. 

BPD directions lying on the basal planes can be different. Five BPD lines have been 

shown in this Figure in different directions.  It can be easily understood that BPD-C has 

the highest chance to propagate as it is over the rest due to the shortest distance it needs 

to travel across the epilayer. So, it can be inferred that the BPDs having the direction 

most closely aligned to the          direction will have greater chance to propagate 

into the epilayer without any conversion (fig-16). It was found from different 

BPD-C has the greatest 

chance to propagate 

into the epilayer 

compared to the others. 
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experiments that around 20 to 30 percent of the BPDs propagate into the epilayer during 

the growth on 8
o
 off cut substrates. The rest convert into TEDs. 

 

1.9 MORPHOLOGICAL DEFECTS 

 

Morphological defects in the epilayers are comet, triangular defects, inverted 

pyramids, step bunching, pits, bumps etc. Some of these defects are shown in Figure 

1.18. Lower off cut angle is desirable to prevent material wastage, however lower off cut 

angle generates some additional morphological defects during the epilayer growth. 

Triangular defect and inverted pyramids are observed in much higher number for lower 

off cut substrates. Many of the morphological defects are generated from the particulates 

hampering the step flow during growth.    

 

Effect of particulates on the epilayer growth is investigated by introducing silicon 

particles artificially on the substrate before growth (Rana, Song, Chandrashekhar, & 

Sudarshan, 2012a). The sizes of the particles or cluster of particles showed in Figure 

1.19a vary from ~1µm to 10µm. Epitaxial films are grown with ~3-4µm thickness on this 

substrate. After the growth, pits/bumps, stacking faults, screw dislocations were observed 

at the corresponding locations where particles were present (Figure 1.19a and Figure 

1.19b for comparison).  
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Figure 1.17 Triangular defects and inverted pyramids on 4
o
, 4H-SiC epitaxial growth. 

 

During this particle experiment, it was found that new crystal and morphological defects 

are generated due to the intentionally introduced particles with different shapes and sizes. 

The density of newly generated defects in the epi will depend on the particle density in 

the substrate. Even though these defects were generated due to artificially introduced 

particles, a similar condition can also exist for regular epi growth. Firstly, due to the 

particles introduced by the exfoliation of the parasitic deposition (i.e. deposition taking 

place on the reactor wall) in the reactor and carried to the growth surface by the high gas 

3µm 
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Figure 1.18 a) Nomarsky images of Si particles on a 4H-SiC wafer. b) Nomarsky image 

of the epilaery grown for the same place and magnified images of the positions 

corresponding the the circles (insets) after etching. AFM image is shown for a pit (#9) 

found in the epilayer. 

 

flow. Secondly, particles may also be generated by the formation of clusters in the gas 

phase due to supersaturation (especially severe at high growth rate, i.e. high precursor 

concentration).  These in-grown particles can also generate new defects during epi 

growth similar to the artificially introduced particles discussed earlier.  

 In summary, various important aspects of SiC epitaxial growth are explained in 

this chapter with new visual representations. This chapter will be a good supplementary 

reading to understand SiC fundamentals in conjunction to various literatures, e.g. 

(Matsunami & Kimoto, 1997; Neudeck, 2006). In this chapter we discussed important 

terms for SiC growth which will be frequently used in the later chapters. In next chapters 

we will present the results and discussion of actual epitaxial growth process using 
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chemical vapor deposition (CVD) process in order to solve some of the important 

challenges currently associated with SiC epitaxial growth. 
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CHAPTER 2  

STUDY OF SiC EPITAXIAL GROWTH USING SILANE AND 

DICHLOROSILANE GASES 

2.1 INTRODUCTION 

 

Homoepitaxial growth of SiC is one of the most important processes in the 

fabrication of SiC devices. Although various methods such as molecular-beam epitaxy, 

liquid phase epitaxy, sublimation epitaxy and vapor-liquid-solid method are attempted in 

SiC epitaxial growth, chemical vapor deposition (CVD) is still the leading and the most 

attractive technique to grow thick and high quality epitaxial SiC layers (Henry, Hassan, 

Bergman, Hallin, & Janzen, 2006; Palisaitis & Vasiliauskas, 2008). [25] With 

development of the SiC-CVD technique, modeling and simulation become important for 

reactor design, growth optimization, prediction, and better understanding of the growth 

process, particularly to achieve high growth rate, high quality thick epi for electrical 

power applications  (Danielsson, Henry, & Janzen, 2002; Iftekher, M.V.S.Chandrasekhar, 

Klein, Caldwell, & Sudarshan, 2011; Nishizawa & Pons, 2006). To understand the 

benefits of growth using halogenated silanes, it is essential to understand growths using 

both silane and chlorosilane chemistries. The theoretical and experimental knowledge 

gain from the comparative study between silane and dichlorosilane mediated growths 

presented in this chapter will lay the foundation of the next chapters where fluorinated 

silane is introduced as a novel precursor fog SiC epitaxial growth. 
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The conventional SiC-CVD process uses silane as the Si-precursor, light 

hydrocarbons e.g. propane (C3H8) or ethylene (C2H4) as the C-precursor, and hydrogen as 

the carrier gas. In recent years, chloride precursors such as SiCl4 and/or HCl addition are 

induced to achieve high growth rate and to reduce Si-droplet formation in 4H and 6H 

SiC-CVD process (F. La, Galvagno, Roccaforte, et al., 2006; Pedersen, 2008; Pedersen et 

al., 2007; Wang & Ma, 2007). Numerical simulations have been carried out for 

traditional precursors (Danielsson et al., 2002; Nishizawa & Pons, 2006) and some 

chloride precursors (A Veneroni & Masi, 2006; Wang & Ma, 2008)for growth rate 

prediction.  

An accurate growth rate calculation or model prediction is not possible without 

precise calculation of precursor losses due to gas phase nucleation and parasitic 

deposition. Calculation of gas phase nucleation requires prediction of the number of 

molecular collisions, the nucleated particle size estimation and their dynamics, which are 

very complex and different for different chemistries, and under different growth 

conditions with the variability of reactor geometry etc. A complete modeling tool, which 

considers all of the aforesaid issues to predict the growth rate correctly for various 

chemistries and growth conditions, does not currently exist. Nevertheless, despite the 

limitations, simulation is still a very important tool to understand the CVD growth 

process, to design experiments and to optimize growth conditions. On the other hand, 

simulation can also be improved and supplemented by analyzing experimental data, 

comparing them with the simulation results and optimizing the simulation for accurate 

predictability. Thus, comparisons of simulation with experiments in relation to various 
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growth conditions and gas chemistries are essential to improve the simulation as well as 

to optimize the experiment.  

Dichlorosilane (SiH2Cl2, DCS) is a well-known precursor in the silicon industry 

which was first reported for thick silicon epitaxial growth in 1974 by P. H. Robinson and 

N. Goldsmith (P. H. Robinson & Goldsmith, 1975)and patented by them in 1976  (P. H. 

Robinson, 1976). The low boiling point (8.3
o
C) of DCS ensures efficient and convenient 

reactant delivery at room temperature, which is an advantage over SiCl4. Recently, use of 

DCS in 4H-SiC epitaxial growth was reported by the author’s group for high growth rates 

(Iftekher et al., 2011). Growth rate up to 100 µm/h was obtained from the SiH2Cl2-C3H8-

H2 system.  In depth research of the behavior of DCS in the SiC-CVD process is 

necessary for further optimization of the growth conditions to obtain high quality SiC 

epilayers, which is one of the main objectives of the research presented in this chapter. 

             Si contributing to SiC epi growth can be depleted due to gas phase nucleation, 

parasitic deposition on the reactor walls and other losses. This is called Si-limited growth 

where the growth is restricted by Si depletion. To overcome this restriction, chlorinated 

species are used by either HCl addition or by using some chlorinated silanes as such as 

SiCl4, SiHCl3, or SiH2Cl2. With the addition of Cl, the amount of Si available for SiC 

growth increases due to suppression of gas phase nucleation, thus increasing the growth 

rate proportionately, provided that the C-precursor flow is also increased. However, an 

increment in C-precursor flow may or may not increase the growth rate, due to the losses 

of carbon in various forms. In this situation, the growth is C-limited.  Silicon carbide 

CVD epitaxy is primarily found to be Si-transport limited as per the results by various 
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researchers (Ellison, Zhang, Henry, & Janzen, 2002; Iftekher et al., 2011; Vorob'ev et al., 

2000).  

Kimoto et al. reported the activation energy for vicinal step controlled epitaxy, 

common for SiC film growth, to be very low (~3 kcal/mol compared to ~20 kcal/mol for 

terrace nucleated growth on on-axis SiC substrate). For typical temperatures (1100-

1500°C), growth was not found to be limited by surface reactions, but rather by mass 

transport. In step-controlled epitaxy, at typical temperatures, the growth is mainly limited 

by the diffusion of growth species into the boundary layer at the growth surface (Kimoto 

et al., 1993). Increased growth rate at increased temperatures is shown to be due to the 

increased diffusivity of the gas molecules in the boundary layer at elevated temperatures, 

and not due to increased surface reaction  (Kimoto et al., 1993). Similar discussions are 

available in  (Matsunami & Kimoto, 1997).  Transport limited growth in a similar type 

CVD reactor was also reported by Chowdhury et al. (Iftekher et al., 2011).  

              In a low growth rate environment with low inlet mass flow rate, gas phase 

nucleation is insignificant and hence does not reduce the growth rate considerably. A 

lower concentration of gas molecules due to lower precursor flow rate inherently reduces 

super saturation and gas phase nucleation. A carbon-limited growth might not be 

noticeable at low growth rate conditions due to the insignificant gas phase nucleation 

caused by reduced super saturation. However, later we will present evidence of C-

depletion, even for the low growth rates, from the results of doping concentration 

variation with growth pressure.   

This chapter is divided into two parts. In the first part, analytical calculation of 

diffusivity and growth rate is carried out in silane-C3H8-H2 and DCS-C3H8-H2 systems 
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for understanding the transport process. This general 1-D analytical model provides a 

valuable tool for reactor design in CVD.  

In the second part, Virtual Reactor (VR), a commercial modeling software, is then 

employed to simulate the SiC-CVD process in both systems. Clear indication of gas-

phase nucleation is obtained from the VR simulation results. In this study, parasitic 

deposition on gas injector wall is studied for both precursors. Combining the simulation 

and experimental results with respect to growth rate, doping, and morphology, the SiC-

CVD process in DCS-C3H8-H2 system is analyzed and compared with the traditional 

silane-C3H8-H2 precursor system. Further, in this part, we provide clear evidence of 

carbon depletion which, in turn, influences the doping concentration of the epitaxial 

films. 
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PART I: ANALYTICAL MODEL 

 

In this section we calculate the growth rate using the mass transport phenomenon. 

In essence, first the amount of Si and C atoms entering the boundary layer and 

participating the growth are calculated in this section, and then, the growth rate is found 

from the thickness calculation for 1 hour of mass deposition from these Si and C atoms. 

 

2.2 DIFFUSIVITY  

The diffusivity of precursor gas molecules plays a very important role in the 

diffusional mass transfer process during CVD epitaxial growth. Diffusivity of dilute gas 

A in carrier gas B can be found from the Reid and Sherwood (1966) expression which is 

valid below 20 atm (Skelland, 1985) 

                                        
 
 
 

            
 

 

  
  

 

  
                    (2.1) 

Where P is in atmospheric pressure (atm), T is temperature in Kelvin, MA and MB are 

molecular masses of gas A and gas B, σAB is the collision diameter, which is the average 

of the diameters of two colliding molecules in Angstrom. A so called collision integral 

ΩD.AB includes the dynamics of molecular interaction due to their speeds, masses and 

angles of collisions (Spencer, Toguri, & Kurtis, 1969). Collision integrals for gas 

molecules based on Lennard-Jones potentials can be found from the    
 

   
 vs. ΩD.AB 

Table reported by J.O. Hirschfelder et al. (1954) (Hirschfelder, Curtiss, & Bird, 1954; 

Skelland, 1985), where kB is Boltzmann’s constant and εAB is a Lenneard-Jones force 

constant in joules. Lennard-Jones force constants are found in the Lennard-Jones 

potential function, which estimates the electric potential between molecules A and B. The 
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diffusivities of silane and propane in hydrogen gas at 1 atm and 273K is calculated to be 

0.51 and 0.37cm
2
/s, respectively from Equation-1,. However, relevant data for DCS are 

not available to directly apply in Equation-1 to find the diffusivity of DCS. 

 
Figure 2.1 Theoretically calculated (a) diffusivity versus molecular weight plot calculated 

for various gases at 1 atm (760 torr) and 273
o
K, (b) diffusivity versus molecular weight 

plot for various gases at 300 torr and 1823
o
K (1550

o
C)  
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As a general rule, diffusivity of molecules decreases for heavier gases (Putte, 

Gilling, & Bloem, 1975). Lower diffusivity ensures lower activity of the associated gas 

molecules in terms of their participation in growth. Diffusivity of a gas molecule can be 

extrapolated from the empirical molecular weight versus diffusivity relation (Shephered, 

1965). This is especially useful to estimate the diffusivity of gases for which the required 

data are not readily available to apply in Equation 1.1. We calculate the diffusivities of 72 

gases found in (Skelland, 1985)using Equation 1.1 and estimate the diffusivity of DCS 

(molecular weight 100) in hydrogen at 1 atm and 273K, to be 0.38 from the power law 

trend line in Figure 2.1a.  

 

The species primarily participating in growth depend on the gas decomposition at 

growth conditions. Decomposition of silane, chloro-silane, and propane in a SiC-CVD 

process has been extensively studied in previous publications (Kolke & Gardlner, 1980; 

Nishizawa & Pons, 2006; Swihart & Carr, 1998). Table 2.1 lists the main relevant 

molecules for growth in silane and DCS systems and their diffusivities at 273K and 1 atm 

extrapolated from Figure 2.1a. We extrapolated diffusivities of these molecules from the 

empirical molecular weight versus diffusivity relation from (Shephered, 1965) and listed 

them as well in Table 2.1 for comparison. The difference between them can be attributed 

to the inherent average (%) error of the Equation 1.1 (Reid and Sherwood, 1966) which is 

approximately 7.5% (Skelland, 1985). 

 

 

 



www.manaraa.com

 

41 

 

Table 2.1 Experimental and theoretical values of the diffusivities of various gas 

molecules in the silane-propane and DCS-propane CVD chemistries at STP. 

 

 

Molecule 
Molecular 

weight 

Diffusivity, 
Do 

(cm2/sec) 
Calculated 

(Figure 
2.1a) 

Diffusivity, 
Do 

(cm2/sec) 
[23] 

SiH4    0.51      
SiH2    0.54      
SiH    0.54      
Si    0.55      

SiH2Cl2     0.38      
SiCl2    0.39      
SiHCl    0.44      
SiCl    0.44      
HCl    0.51 0.58 

C3H8    0.37 0.52 
C2H5 29 0.55 0.65 

   C2H4 28 0.55 0.66 
C2H2 26 0.56 0.68 

CH4 16 0.64 0.75 
CH3 15 0.66 0.77 

 

 

It is seen in Table 2.1 that the different decomposed species from silane have 

similar diffusivities because stripping off the hydrogen does not change the molecular 

mass significantly. In the same way, for DCS, diffusivity of the DCS gas molecule 

(SiH2Cl2) does not vary much compared to SiCl2, which has been shown to be stable, and 

to be the main growth- participating species decomposed from DCS (Valente, Cavallotti, 

Masi, & Carra, 2001).  Using this consideration, later, we calculate the growth rate by 

using the diffusivity of SiH4 molecule for silane and that of SiH2Cl2 molecule for DCS 

assuming that this calculation will not vary considerably from those of the other growth 

participating species for these chemistries.  
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             The diffusivity of a gas molecules at temperature T2 can be calculated from the 

diffusivity at temperature T1 by applying the following relationship (Skelland, 1985). 

                                             
  

  
 
 

  
  

  
 
        

        

                     (2.2) 

The diffusivity of silane at the regular growth condition (300 torr and 1550
o
C in this 

chapter) is analytically calculated to be 33.6 cm
2
/s by using Equation 2.2. Since the 

collision integrals of the DCS molecule are not readily available, we extrapolate the 

diffusivity of DCS to growth conditions from the fitted curve (Figure 2.1b). We estimate 

the diffusivity of DCS to be ~25 cm
2
/s from this graph at the growth condition (300 torr 

and 1550°C). 

2.3 GROWTH RATE CALCULATION 

 In order to predict growth rate by analytical calculation, the growth process is 

analyzed in a simple reactor geometry as shown in Figure 2.2.  

Initially, Hydrogen (6000 sccm) flows into the reactor. The silane flow (1 sccm) 

is initiated at 1550
o
C. A stagnant layer forms near the growth surface in the boundary 

layer (Figure 2.2b). The very first few adhered molecules start participating in the growth 

kinetics and a concentration gradient forms. The concentration of gas molecules at the 

solid-gas interface is reduced due to the gas molecules being incorporated into the solid 

surface, assumed the surface to be a perfect sink, and diffusional mass transfer sets in due 

to the difference in concentrations. It is assumed that there is always one carbon atom 

present (from propane) for each silicon atom (from the Si precursor) in the boundary 

layer during growth. 
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Figure 2.2 a) Schematic of the CVD reactor used for growth calculation. b) Boundary 

layer at the solid-gas interface. 

The calculation can be divided into three parts. They are: calculation of diffusivity 

of silicon precursors in the hydrogen, calculation of the boundary layer thickness, and 

finally calculation of growth rate using Fick’s law of diffusion. This provides a general 

first order 1-D estimation of growth rate for a given system. Since this calculation does 

not include gas phase nucleation or aerosol formation, a lower growth rate is expected 

compared to the actual experimental growth. The difference between experimental and 

calculated growth is an indication of precursor losses in the reactor and should be 

minimal for ideal growth conditions.  
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            The Si flux (cm
-2

s
-1

) near the growth surface in the reactor geometry shown in 

Figure 2.2 can be found from (Ghandhi & Field, 1984)  

                                                               
    

 
                                                  (2.3) 

No is the inlet reactant concentration (cm
-3

) and δ is the boundary layer thickness (cm). 

The inlet reactant concentration of Si,        
   

  
         cm

-3
 (Where PSi is 

inlet Si partial pressure at a growth pressure of 300 torr and a temperature of 1550°C).  

The thickness of the boundary layer is found from (Ghandhi & Field, 1984) 

                                                                 
 

 
                                               (2.4) 

Where x = 33 mm in our case in (Figure 2.2a) from (Ghandhi & Field, 1984).  

The free velocity of gas in the tube beyond the boundary layer region is 4.5 m/s from 

Equation 2.5. 

                                                              
 

 
 
  

 
                                                    (2.5) 

Here, the gas flow rate M= 6000 sccm, the cross section area of the hotwall S= 34 cm
2
, 

Po=Atmospheric pressure in torr, P= growth pressure in torr. 

The boundary layer thickness is found using Equation 2.4 to be ~9 mm (diffusivity of 

silane D=33 cm
2
/s by calculation from section 2.1). 

Using the above values, the number of Si atoms diffusing into the boundary layer per 

second is calculated from Equation 2.3 to be,                     

The total Si mass transfer in t seconds is, 

                                                  
    

  
                                          (2.6) 
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Here NA is Avogadro’s number, M is the molar mass. It is assumed that the propane flow 

rate is adjusted in such a way that there is no deficiency of carbon atoms in the boundary 

layer for each incoming silicon atom as discussed in the introduction.  

The total C mass transfer in t second is,  

                                                        
    

  
                                                 (2.7) 

The average growth rate for the hot wall cross sectional area (A) at the growth surface is,   

                                                       
          

 
 
 

 
                                                (2.8) 

Here ρ, the density of SiC, is 3220 Kg/m
3
. 

Using Equation 2.8, the growth rate for the silane precursor was found to be ~7.5 µm/hr. 

             Using the diffusivity of DCS (SiH2Cl2) as 25.6 cm
2
/s (estimated from Figure 2.1b 

for the growth conditions), the growth rate is found to be ~6.5 µm/hr for the DCS 

precursor.  

Comparison of growth rates using silane and DCS precursor gases, based on the 

above 1-D calculations, is shown in Table 2.2. For silane, the growth rate calculated by 

the VR simulation software (details of VR are provided in the experimental section), is 

found to be ~6 um/hr for the geometry in Figure 2.2a. Experiments are conducted using 

the same reactor arrangement (Figure 2.2a) to compare simulation and analytical 

calculation results giving a growth rate of ~5 um/hr. This growth rate is lower than the 

analytical calculation and simulation results as expected. The difference is attributed to 

precursor losses due to gas phase nucleation and parasitic deposition. We will provide 

evidence of parasitic deposition later, while gas phase nucleation has already been 

reported in the literature to be an issue in CVD growth. While the analytical model is 

simple but incomplete, it provides a convenient starting point to study the growth of SiC. 
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Table 2.2 Comparison of analytical calculation of diffusivity, boundary layer thickness 

and growth rate for Silane and DCS. 

 

 

Gas 
Diffusivity, 
D (cm2/sec) 

Boundary layer 
thickness (mm) 

Analytical 
growth rate 

(µm/hr) 

Silane (SiH4) 33.6 8.8 7.5 um/hr 
Dichlorosilane 

(SiH2Cl2) 
25.6 7.7 6.5 um/hr 
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PART II: SIMULATION AND EXPERIMENTAL STUDY 

2.4 INFLUENCE OF GROWTH PRESSURE 

In this section epitaxial growth using silane and DCS is compared at various 

growth pressures in terms of growth rates (found from experiment and simulation) doping 

and surface morphology. These are explained on the basis of different decomposition 

behavior of the precursor gases obtained from simulation. 

In order to understand the influence of pressure on epitaxial growth, a brief 

discussion of the pressure control mechanism in the CVD reactor, which eventually 

controls the residence time, gas phase nucleation, parasitic deposition, and epitaxial 

growth for a given gas flow rate and reactor geometry is provided below. 

In CVD growth, gases flow in the chamber at certain flow rates into the reactor 

and the pressure is maintained by an adjustable valve. This valve controls the aperture of 

the gas exit path in the reactor to maintain a certain pressure while gases flow constantly 

during the growth. A higher amount of gas is pumped away per unit time to maintain 

lower pressures and vice versa. A lower pressure shortens the residence time of the gas 

molecules in the reactor proportionately. At any instance during growth, the number of 

gas molecules per cc in the chamber is lower for lower growth pressures than that at 

higher growth pressures for fixed flow rates of precursor gases.  

However, the total number of gas molecules flowing through the chamber cross 

section per unit time (molecules/cm
2
/sec) remains constant at a certain gas flow rate 

irrespective of the growth pressure. Considering only the amount of mass passing through 

the reactor cross section, the pressure thus should not have any effect on the growth rate. 

It is important to consider the interaction of these gas molecules among themselves in the 
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gas and with the reactor furniture parts in order to estimate the correct growth rate at 

various pressures.  

Obviously, a longer residence time at a higher pressure will allow these molecules 

to absorb more energy from the heating element as well as to interact among themselves 

for a longer period with shorter mean free path. This will increase both gas phase 

nucleation and parasitic deposition on the reactor walls and thus depletes the source 

elements from the intended crystal growth. These losses deplete the precursors, change 

the effective C/S and/or induce particulates on the growth surface and hence can affect 

growth rate, doping concentration and morphology. It is noteworthy that different 

reactors may behave differently and growth related results may not be comparable even 

at same growth pressures since volume and geometry of the reactor, which determines the 

residence time of the gas molecules in the reactor, might vary for different reactors. 

However, the trend of growth rates is expected to be the same despite different furnace 

geometries. 

2.5 EXPERIMENTAL SETUP 

Epitaxial growth of SiC is carried out using an inverted chimney type vertical hot-

wall CVD reactor (Figure 2.3). This arrangement consists of a hotwall, a gas injector and 

a substrate holding susceptor. The system is inductively heated by a 20kW generator at 

9090 Hz. Silane/ DCS and propane are used as precursor gases.  Propane, silane/DCS and 

hydrogen gas flow are kept fixed at 1.5 sccm, 3.28 sccm and 6000 sccm respectively 

while the growth temperature is fixed at 1550
o
C. The distance between the injector end 

and the SiC substrate sample is 33 mm and the growth pressure is varied from 30 to 600 

torr.  Commercially available 4H-SiC wafers (8 degree off cut towards [     ], optically 
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polished) are used as the substrate for all of the experiments. The epilayer thickness is 

measured using Fourier transform infrared (FTIR) spectroscopy.  Atomic force 

microscopy (AFM) is used to measure the roughness of the samples. Capacitance-voltage 

(C-V) mercury probe measurement is performed to determine the doping concentration of 

the epilayers. 

 
 

Figure 2.3 Schematic diagram and boundary conditions of the CVD furnace used in 

simulation. The sticking coefficient for the growth surface is assumed to be 1, i.e., growth 

species adsorbed on the substrate surface will participate in growth.  

 

VR, developed by Semiconductor Technology Research Inc. is employed for 

simulation of the growth process in our reactor geometry shown in Figure 2.3. The 

boundary conditions and material properties are also provided in Figure 2.3.  A complete 

discussion of the thermal field calculation using the VR can be found in (Bogdanov et al., 
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2001). Parasitic deposition is included in the simulation by defining ‘catalytic’ or reactive 

growth surfaces in the furnace based on our observation of actual parasitic deposition 

taking place on the injector tube during growth. Catalytic surfaces are indicated by 

dashed lines in Figure 2.3.  Silane or DCS chemistries can be used in the simulation for 

calculation of the partial pressures of the different decomposed species and growth rate at 

various pressures (30 torr to 300 torr). The simulation of gas decomposition in VR offers 

an important tool to compare DCS and silane chemistries at various growth conditions. 

 

2.6 DECOMPOSITION OF SILANE AND DCS INTO ELEMENTAL SILICON 

   First, the decomposition of silane and DCS into elemental Si is analyzed at the 

same experiment growth conditions by VR. A higher dissociation bonding energy per 

mole for a molecular bond requires a relatively longer residence time (function of 

pressure) to dissociate into constituent species at a fixed temperature (1550
o
C in our 

case). The dissociation bonding energy of relevant bonds in silicon carbide CVD is 

shown in Table 2.3 (Huheey, 1972).  The bond energy of Si-Cl is 381 KJ/mol compared 

to that of Si-H (318 KJ/mol), which implies that for a given system, when heat energy is 

applied, the Si-Cl bond should take a longer time to dissociate compared to the Si-H 

bond.  

The VR simulation of the decomposition of DCS and silane into elemental Si at 

various growth pressures is shown in Figure 2.4 for different growth pressures. From 

Figure 2.4 it is evident that silane decomposes in a higher proportion into elemental Si at 

a low pressure (30 Torr) compared to DCS. However, at higher pressures (> 300 Torr) 
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Table 2.3 Dissociation bonding energies (Huheey, 1972) for various bonds related to 

silicon carbide growth. 

 

Bond KJ/mol 

H-Cl 428.02 
C-H 411 
Si-Cl 381 
C-C 345.6 
Si-C 318 
Si-H 318 
Si-Si 222 
C=C 602 
C≡C 835.1 

 

even DCS dissociates to form an increased amount of elemental Si. At 30 torr, the gas 

molecules pass through the chamber with a velocity of ~4.5 m/s (from simulation and 

analytical calculation) for the hotwall cross sectional area. At this velocity, the residence 

time of the gas molecules in the hot zone of  the furnace is long enough for the silane 

(SiH4) molecules to absorb adequate energy to dissociate into elemental Si in a notable 

amount as presented visually and quantitatively in Figure 2.4b (30 torr, silane). On the 

other hand, in DCS, elemental Si does not form in a considerable amount as DCS 

(SiH2Cl2) molecules posses higher dissociation bonding energy as seen in Figure 2.4b (30 

torr, DCS). This is the key difference between DCS and silane in terms of their 

dissociation behavior, as evidenced by the VR simulation, which is the primary reason 

for the suppressed gas phase nucleation and parasitic deposition in DCS compared to 

silane. 
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Figure 2.4 Simulation of Si partial pressure at various growth pressures. Suppression of 

Si formation in DCS is clearly seen at 30 torr. Temperatures at specific locations in the 

reactor are shown. 

 

Change of gas velocity at various growth pressures influences the temperature 

profile. The variation of temperature profile at different pressures also influences the gas 

decomposition behavior (i.e. amount of different decomposed species) in the reactor. 

However our discussion is only limited to the comparison of the decomposition behavior 

of DCS and silane gases at a given growth pressure. Change of temperature profile due to 

change of gas velocity is applicable to both of the chemistries, and hence ignoring this 

effect does not affect our chemical decomposition comparisons of two gases presented in 

this section. Experimentally, we find that the RF power consumed at a given growth 

temperature and pressure is the same for both precursors, indicating that the temperature 

profile is similar. 
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2.7 GROWTH RATE VERSUS PRESSURE 

    The growth rates for various growth pressures are plotted in Figure 2.5 using 

simulation and experiments for silane-propane and DCS-propane precursor systems. The 

experimentally obtained growth rate for the DCS precursor is found to be higher 

compared to growth from silane at all growth pressures. This difference is found to be 

more significant at a lower growth pressure (30 torr).  This is consistent with simulation 

shown in Figure 2.4. Expectedly, the simulation results without the consideration of the 

gas phase nucleation predicted a higher growth rate for silane than the DCS at the same 

conditions. We explain this behavior below. 

 
Figure 2.5 Growth rate versus pressure for a) silane and b) DCS precursors: simulation 

and experiments 

 

      Silicon and carbon growth species (supplied from precursor gas dissociation) 

which do not participate in the epitaxial growth can be considered as a loss mechanism. 

These losses in the SiC-CVD process are mainly due to silicon gas phase nucleation and 

parasitic silicon and parasitic SixCy deposition on the injector or reactor walls.  
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Figure 2.6 Comparison of parasitic deposition for DCS and silane in the gas injector tube 

shown as PQ in Figure2.1 

 

The parasitic depositions on the injector tube wall after several growth runs is shown 

by the split tube image in Figure 6 with the associated temperature profile The deposition 

starts from points ‘A’ and ‘A´’ for silane and DCS gases respectively (Figure 2.6). 

Position ‘A´’ is about 15mm downshifted compared to position ‘A’ for the case of DCS 

which indicates that the parasitic deposition region is reduced for DCS. A reduced 

parasitic deposition will increase epi growth rate by reducing the precursor loss. 

Comparison of these regions indicates that: AB>A´B´, BC>B´C´ and BD=B´D´, and 

C´D´>CD (Figure 2.6a and 6b). A detailed study of the composition of these regions is 

beyond of the scope of this paper. Regions CD and C´D´ are to be the regions where SiC 

a) b) c) 

d) 
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growth take place on the tube wall. Elongated C´D´ is a sign of enhanced SiC growth 

using DCS growth compared to silane (CD). A close look at the positions corresponding 

to the triangle and circle marks (Figure 2.6a and 2.6b) reveal large, loosely bound 

granular growths in the tube for silane (Figure 2.6c). Growth with this condition is found 

to be deteriorated with particles on the epi surface, probably due to the exfoliation of 

these grains from the tube. Parasitic deposition using DCS was found to be smoother at 

the same position (Figure 2.6d). An improved epi surface was observed for this condition. 

Thus we can deduce that the smoother parasitic deposition in DCS is indicative of 

improved epi quality due to prevention of particle droplets from the tube wall being 

delivered on to the growing epi surface. These elemental assignments were confirmed 

using EDX (Energy Dispersive X-ray spectroscopy). The composition and span of this 

region depends on the growth conditions such as temperature and pressure for a given gas 

flow rate. 

The total mass associated with parasitic depositions is measured to confirm that DCS 

increases the growth rate by suppressing losses (reduced gas phase nucleation and 

parasitic deposition).  The mass of the parasitic depositions are measured by weighing the 

gas delivery system where parasitic deposition takes place, before and after Si precursor 

flow. Precursor flow rate is kept at 5sccm for silane and DCS experiments and other 

growth conditions are kept the same. The total deposited mass (Si) in the gas delivery 

system was found to be ~370mg for silane compared to ~323mg using DCS, indicating 

that less Si is lost to parasitic deposition using DCS.  The above results support the 

experimentally observed increase of growth rate in DCS compared to silane (Figure 2.5). 
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Thus the DCS system increases the availability of growth species for the epi growth 

boundary layer by reducing Si losses in the gas stream and reactor walls.  

       It is to be expected that, unlike the experimental results, the simulation (and 

calculation in section-1) gives a higher growth rate for silane precursor than DCS. The 

higher diffusivity and more efficient decomposition of silane (Figure 2.4b) into elemental 

Si, suggesting a higher growth rate for silane compared to DCS for the simulation (Figure 

2.5) without including gas phase nucleation (which exists during the actual growth). We 

attribute the difference between the growth rates found using simulation and experiment 

(Figure 2.5) is an indication of the suppression of gas phase nucleation and parasitic 

deposition using DCS compared to silane. Hence, an ideal simulation tool must 

incorporate the respective precursor losses in its model to predict the growth rate 

accurately for a given condition.  

According to the collision theory of chemical reaction, elemental silicon has the 

highest probability to take part in the reaction, in the gas phase, to form Si particles since 

it has a higher number of dangling bonds to form Si-Si bonding. From the analysis of 

simulation results, the degree of formation of elemental Si for a certain growth condition 

is an indication of the severity of silicon gas phase nucleation in the reactor. Combining 

simulation and experimental results (Figure 2.4, 2.5), it can be concluded that growth at 

30 Torr in DCS is mostly due to participation of SiClx or SiHxClx species in growth, due 

to the smaller amount of decomposed Si in this condition (Figure 2.4). Thus, DCS 

provides an environment with reduced Si gas phase nucleation, consistent with the 

assumption that collisions among SiClx or SiHxClx have lower probability to form Si 

droplets or silicon aerosol. On the other hand, Figure 2.4 shows that silane decomposes 
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much more easily to form elemental Si even at a lower pressure (30 torr) resulting in 

higher gas phase nucleation and lower growth rate. However, at higher pressures 

(>300Torr), simulation shows that even DCS decomposes significantly to produce 

increased amounts of elemental Si (Figure 2.4a) leading to increased Si aerosol formation 

(or gas phase nucleation) and reduced growth rate. However, the increased Si formation 

in DCS at higher pressures is still less than silane, consistent with the experimental 

results (Figure 2.5). Increased HCl formation (which will be discussed later) and related 

etching (Nakamura et al., 2000) may also be a reason for lower growth rate found at 

higher pressures using DCS. 

2.8 VARIATION OF DOPING CONCENTRATION WITH PRESSURE  

       Experimental results demonstrate that n-type doping concentration of the 

epitaxial layer increases with increasing growth pressure (Figure 2.7) for both precursors; 

this result is consistent with the previously published results for silane (Forsberg, 

Danielsson, Henry, Linnarsson, & Janzen, 2002). The effective C/Si ratio is the carbon to 

silicon ratio at the growth surface rather than C/Si ratio at the inlet.  The effective C/Si 

ratio depends on the relative losses of silicon and carbon precursors (or the relative 

availabilities of them for epi growth) mainly as a result of parasitic deposition and gas 

phase nucleation (or aerosol formation) prior to reaching the growth surface. Si-aerosol 

can be considered to be a “pseudo-gas” with much heavier particles, with considerably 

lower diffusivity (Vorob'ev et al., 2000). Lower diffusivity restricts the molecules 

participating in growth by diffusional mass transport. According to this picture, a higher 

gas phase nucleation rate at higher growth pressures should result in higher effective C/Si 

ratio (due to depletion of Si) and lower nitrogen incorporation by the site competition 
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principle (Larkin, Neudeck, Powell, & Matus, 1994). However, this is in contradiction 

with our experimental results where net n-type doping increased at higher pressures 

(Figure 2.7). This discrepancy can be explained if depletion of carbon is considered as 

well. If depletion of C is considered, then the relative depletion of carbon to the depletion 

of silicon (already discussed) will govern the effective C/Si ratio.  

The details of carbon deposition from the hydrocarbon  precursor are disscussed 

elsewhere (Feron, Langlais, Naslain, & Thebault, 1999), and summerized below to 

provide rationale for carbon depletion during growth due to carbon depositions on the 

reactor walls.  

            Carbon produced by the thermal decomposition of hydrocarbon gases such as 

methane, and propane is called pyrocarbon. Pyrocarbon is deposited for various 

applications such as carbon resistors, microphonic materials, nuclear material coatings, 

etc. Pyrocarbon deposition is a complex process which is believed to be the result of 

simultaneous gas phase and surface reaction of hydrocarbons (Feron et al., 1999). 

Removing hydrogen from the hydrocarbon molecules by applying heat initiates the 

process of carbon deposition. Interaction amongst these dehydrogenated molecules and 

their further dehydrogenation and collisions may form complex and heavier carbon 

enriched molecules or polymers (Grisdale, 1953). These are carbon particles of different 

sizes and shapes, which deposit on the reactor parts. The shape and size of these 

depositions is reported to vary at different temperatures (1000 to 2400˚C) (Feron et al., 

1999; Grisdale, 1953). Formation of heavier carbon rich molecules or polymers in the gas 

can be considered as gas phase nucleation of carbon (Grisdale, 1953). The deposition rate 

of pyrocarbon from propane is a function of temperature, pressure, flow rate, etc. which 
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is well studied (Feron et al., 1999). In silicon carbide CVD, the presence of the 

hydrocarbon propane provides a favorable condition for carbon deposition on the furnace 

parts similar to the pyrocarbon CVD described in (Feron et al., 1999).      

             With respect to SiC epitaxy, the pyrocarbon deposition on the reactor walls and 

carbon gas phase nucleation are termed as carbon losses since they deplete the carbon 

precursor. These carbon losses will vary depending growth temperature and pressure 

since pyrocarbon deposition is influenced by temperature and pressure. We believe that 

carbon losses may affect growth in terms of growth rate, epi film doping concentration 

and crystal quality. However, due to the presence of silicon in the SiC CVD environment, 

carbon depositions in the reactor may take much more complex forms than the ordinary 

pyrocarbon depositions.   

 

 
Figure 2.7 Doping concentration versus growth pressure. 

      As discussed earlier, parasitic depositions occur mainly in the injector tube and 

the hotwall. There are three possibilities for parasitic deposition on these walls: 
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pyrocarbon, silicon, and silicon carbide. The deposition of SiC (1C and 1Si) should not 

have any effect on the effective C/Si ratio at the growth surface and hence is not expected 

to affect the doping at the growth surface. On the other hand, the relative amounts of 

pyrocarbon and parasitic silicon deposition on the tube wall will play a dominant role in 

determining the effective carbon to silicon ratio at the epitaxial growth surface. The 

behavior of doping versus pressure in Figure 2.7 can be explained if we consider a higher 

amount of carbon depletion compared to silicon, reducing the effective C/Si ratio. This 

increased reduction of carbon can be attributed to the increased carbon losses at higher 

pressures due to increased pyrocarbon deposition on the reactor materials and formation 

of heavier carbon enriched molecules in the gas. We consider this loss of carbon to be the 

reason for the reduced effective C/Si ratio at higher pressures. This increases the net n-

type doping according to the site competition rule (Larkin et al., 1994), a result consistent 

with our experimental observations in Figure 2.7. A detailed study is required to 

determine the relative depletion of carbon versus silicon in the reactor under different 

growth conditions. 

       It is observed that at higher pressures above 300 torr, both DCS and silane yield 

similar doping concentrations (Figure 2.7). We can conclude that at higher pressures, 

both precursors have similar precursor losses. Simulation results demonstrated a higher 

amount of elemental Si formation at higher pressures for both of the precursors (Figure 

2.4) which indicates similar precursor losses for both chemistries. Growth with DCS at 

this condition is due to the participation of elemental Si in the growth unlike SiCl2 at low 

pressures. Therefore at higher pressures, DCS growth is similar to silane growth. We 

therefore infer that at high pressures (>300 torr), both precursors result in a similar 
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effective C/Si ratio. The overall relatively higher n-doping for DCS compared to silane 

(Figure 2.7) can be explained by the mass measurement of the gas delivery tube 

discussed earlier. The lower parasitic deposition in DCS indicates a Si rich growth 

condition (lower C/Si ratio) which is consistent with higher n-doping as per site-

competition epitaxy. A sharp change of doping is observed for silane at lower growth 

pressures compared to that of using DCS. Difference between the doping found by DCS 

growth and silane growth is particularly very high at 30 torr (Figure 2.7). This large 

difference indicates that at 30 torr, effective C/Si ratio using silane is much higher 

compared to that of using DCS, i.e. at lower pressures growth is much more carbon rich 

for the case of silane than DCS. Further study is required to explain this behavior and 

might be the subject of a future publication.  

2.9 VARIATION OF SURFACE MORPHOLOGY WITH GROWTH PRESSURES  

    Even though a smoother surface is obtained using DCS at a low pressure (30 

Torr), the surface quality degrades significantly at higher pressures (above 450 Torr, 

Figure 2.8b). A severely degraded wavy surface morphology, with increased roughness, 

is observed by AFM analysis for epilayers grown at higher pressures. However, no 

significant variation of surface morphology is observed for silane growths at various 

pressures (Figure 2.8c). Increased formation of HCl due to dissociated Cl from DCS at 

high pressures is responsible for surface waviness (degradation) because of excessive 

HCl etching (Nakamura et al., 2000) during growth. This assertion is supported by VR 

simulation as shown in Figure 2.8a, which shows ~20 times increased amount of HCl at 

600 torr than at 30 torr, demonstrated by the larger red area.  



www.manaraa.com

 

62 

 

 
Figure 2.8 (a) Simulated HCl partial pressure for various growth pressures for DCS. 

Temperatures at specific locations in the reactor are shown. (b) AFM surface roughness 

at various growth pressures for DCS precursor. (c) AFM images for epitaxy grown by 

silane precursor at various growth pressures. 

 

In summary, diffusivities of silane and DCS gases in hydrogen are calculated using 

Reid and Sherwood’s formula and growth rates are calculated using diffusional mass 

transport. Experimentally, a higher growth rate is observed for DCS compared to silane 

chemistry despite DCS’s larger molecular mass. This higher growth rate is due to reduced 

loss of the silicon precursor attributed to suppressed gas phase nucleation and parasitic 

deposition in DCS environment. The reduction of parasitic deposition using DCS is 
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confirmed by mass measurements of parasitic deposition. Further comparison is provided 

for growth rates obtained in silane and DCS using analytical calculation and by 

simulation. 

             Comparison of growth rates at various growth pressures for these chemistries 

demonstrate that DCS growth rate increases noticeably at low pressures (e.g., 30 Torr). 

With the support of simulation results, it is demonstrated that growth with DCS at this 

low pressure is mostly due to (mediated by) SiHxClx species which creates the condition 

for reduced gas phase nucleation. At higher pressures even DCS decomposes into 

elemental Si, which reduces growth rate by increasing silicon loss. 

             The dependence of doping concentration on pressure is examined for both 

precursors and explained by consideration of effective C/Si ratio, the carbon to silicon 

ratio at the growth surface rather than the C/Si ratio at the inlet. Carbon depletion is 

considered for the first time in SiC CVD to explain the higher net n-type doping found at 

higher growth pressures. We infer that the relative losses of carbon and silicon growth 

species cause a variation in the effective C/Si ratio, which governs the doping 

concentrations at various growth pressures.  

               A wavy, degraded surface was observed using DCS at high pressures in contrast 

with growth by silane. Excessive etching due to the presence of higher amounts of HCl in 

DCS at higher pressures is believed to be the reason for the observed degradation in 

surface morphology. 

 In this chapter we discussed how growth can be improved by using a chlorinated 

silane gas instead of pure silane. Similarly, fluorosilane gases can also be used for the 
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growth. The extremely strong Si-F bond in fluorosilane gas gives some advantages over 

chlorosilane gases and will be discussed in the next chapter. 
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CHAPTER 3  

EPITAXIAL GROWTH USING FLUORINATED SILANE (SiF4) 

3.1 INTRODUCTION  

 

In the previous chapter we discussed the benefits of using a chlorinated silane 

(DCS) over using pure silane gas as Si precursor. Using the same reason for using DCS 

instead of silane, in this chapter we will argue that a higher bond strength gas SiF4 will 

specifically suitable for high temperature SiC CVD. 

High quality, thick (~100µm), low doped and low defect density SiC epitaxial films are 

essential for high voltage (blocking voltage >10kV), light, compact and reliable next 

generation power devices. These devices find application in efficient electric vehicles, 

power supplies and smart grids. One of the significant challenges in obtaining high 

quality thick SiC epitaxial films is to restrict/eliminate the Si gas-phase nucleation or 

aerosol formation during growth. The generated aerosol particles adversely influence 

growth by reducing the growth rate due to precursor losses, and also affect crystal quality 

(Vorob'ev et al., 2000), since the Si droplets are carried to the crystal growth surface. 

Moreover, liquid aerosol particles adhere to the various reactor parts (parasitic 

deposition), and contribute to their severe degradation during epitaxial growth. These 

parasitic depositions are generally loosely bound, and can be carried to the growth 

surface during growth as particulates, resulting in degradation of crystal quality by 
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introducing defects in the growing epitaxial layers (Rana, Song, et al., 2012a). The 

aforesaid condition is specifically severe at higher precursor gas flow rates or in long 

duration growth required to achieve high quality thick epitaxy since parasitic deposition 

and related particulate formation are also increased at these growth conditions. At this 

parasitic deposition enhanced condition, the cost of growth is also expected to increase 

due to frequent replacement of degraded reactor parts. Silane is commonly known to 

cause silicon supersaturation, limiting high growth rates (F. La, Galvagno, Foti, et al., 

2006; Lu et al., 2005; Pedersen et al., 2007). Using silane, gas decomposition and 

parasitic deposition start very early in the gas delivery system and impede achieving good 

growth by impinging particulates to the growth surface (Leone et al., 2010; Rana, Song, 

et al., 2012a; A. Veneroni, Omarini, & Masi, 2005). In spite of the above limitations, 

high growth rate (growth rates of 32um/hr (Myers, Shishkin, Kordina, & Saddow, 2005), 

50um/hr (Hori, Danno, & Kimoto, 2007), and even 250um/hr (Ito, Storasta, & Tsuchida, 

2008)), good quality (good crystallinity and surface morphology), thick epitaxy has been 

reported using silane. However, it is to be noted that the above reported high growth rates 

require very high hydrogen flow rates and low pressure conditions in order to suppress Si 

droplet formation, rendering such a process impractical. Consequently extreme parasitic 

deposition and degradation of reactor parts is expected. 

No systematic study of parasitic deposition is present in the current literature. One 

of the challenges associated with the study and understanding of parasitic deposition is 

the difficulty to quantify and characterize the deposited parasitic materials in the reactor. 

The reactor gas delivery system consists of a closed tube which is difficult to observe or 

measure for parasitic deposition. Efforts have been made to suppress parasitic deposition. 
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Parasitic deposition and related particle formation is considered to be the reason for lower 

process yield for device fabrication. Parasitic deposition and related issues might not be 

an important consideration for small quantity production. For quantity production 

changing reactor parts after few runs does not increase the cost dramatically and possibly 

over looked by various research groups. However, in industries, where bulk amount of 

epilayers are grown, parasitic deposition related issues cannot be ignored in order to 

reduce the cost. Parasitic deposition was suppressed (U.S. PATENT 7,118,781 B1), 

where a special arrangement is used to prevent the deposition of parasitic material on the 

wall. In this arrangement an inert gas is also flown along with the precursor gases. The 

purpose of the flowing of this inert gas is to create a buffer gas layer or a shield between 

the precursor gases and the surfaces of the reactor parts so that the precursor gases do not 

come into contact to the reactor wall. This is a technical process where parasitic 

deposition is reduced by reducing the number of gas molecules reaching the reactor 

walls. Despite claim of improvement, no quantitative analysis is provided in this patent 

for the parasitic deposition using this technique. This technique adds a layer of 

complication in the process. A special arrangement of gas delivery system is required for 

this method. Further, parasitic deposition is still expected since it is not possible to 

completely separate the precursor gas from reaching the reactor surface in this process; 

i.e precursor gases will diffuse into the buffer layer and will deposit on the walls. 

Moreover, this process is only beneficial for suppressing parasitic deposition, but it 

cannot suppress Si gas phase nucleation or aerosol formation. On the other hand in our 

proposed method described in this chapter, the suppression of parasitic deposition as well 

as gas phase nucleation is achieved by exploiting the chemical property of a gas 
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appropriate for high temperature SiC CVD instead of controlling the gas dynamics as in 

Figure 3.1.  

 

 

Figure 3.1 Patented technology to suppress parasitic deposition by creating a buffer gas 

layer. 

To understand how gas chemistry can prevent the parasitic deposition or gas 

phase nucleation during growth we need to first understand how Si droplets start forming. 

To understand the gas phase nucleation mechanism let us consider that SiH4 gas is 

flowing into the inlet of a container at a certain flow rates and exiting the outlet at a fixed 

pressure and at room temperature. From the basic law of gases, SiH4 molecules are 

moving in the container with random motion, colliding to each other. Here the number of 

collisions and the mean free path of gas molecules depend on the concentration, 

molecular size, container pressure etc. At lower temperatures (e.g. room temperature), 

even though the gas molecules collide to each other but they do not react and do not form 

complex Si molecules or Si clusters. As an example, SiH4 gas is stored in the cylinder at 

room temperature, where the gas remains intact (no chemical change) even at higher 

pressures (~1E6 torr) with a shelf life of 2 years. This is possible because SiH4 does not 
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decompose at lower temperatures. However, if the temperature is increased then the 

decomposition and chemical reaction in the chamber will take place.  

Whether gas molecules in the stream will react and stick to each other and form Si 

clusters at a certain temperature will depend on inertness at that temperature. Here 

inertness of gas molecules is its resistance against the heat energy preventing them being 

decomposed. In molecules atoms are bonded together with certain strength or bonding 

force. These bonds can be broken by applying external energy, i.e. heat. The energy 

required to break a bond is called dissociation bonding energy (energy/mole). For the 

case of SiH4, when temperature is increased to point (starting from ~600C), there should 

be enough heat energy (318kJ/mol) to break Si-H bonds. At this temperature the original 

form of SiH4 is lost and SiH4 transforms into some free Si radicals with free or dangling 

bonds. These radicals (e.g. SiH3, SiH2, SiH or Si) are much more reactive than their 

parent molecules (e.g. SiH4) due to the free bonds. At this condition, when these Si 

containing free radicals collide to each other then they easily react to each other and form 

heavier Si clusters unlike at room temperature condition. Temperatures at which a silicon 

source gas is decomposed, becomes reactive and starts forming Si clusters are different 

for different silicon precursors. A gas chemistry which decomposes at a higher 

temperature will produce less Si cluster (or aerosol) compared to the gases decompose at 

lower temperatures. Similarly, these high temperature gases will also suppress parasitic 

deposition more effectively. 

Silicon droplet formation and reactor degradation (parasitic deposition and 

particulates) can be improved compared to pure silane by adding HCl (Crippa et al., 

2005; R. L. Myers et al., 2005) into silane. The gas chemistry during this HCl mediated 
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growth is as following. At higher temperature (~600C), hydrogen is detached from silane 

and free radicals with dangling bonds are formed. These free radicals have at least one (or 

maximum four) dangling bonds. Now, collisions will occur due to the random movement 

of the decomposed free radicals. While previously, without HCl, these Si free radicals 

collided to other Si free radicals, now Cl is also present in the system. Hence a Si radical 

also have the possibility to collide with a Cl present in the reactor in addition to Si atoms. 

If a Si radical has probability to create bond either to a Si or a Cl  then Si has the higher 

probability to form a bond with Cl leading to SiClx type radicals since Si bonds stronger 

with a Cl than to itself (Pedersen et al., 2007). Hence in this condition Si containing free 

radicals are mainly SiClx species. Now formation of Si-Si bonds and eventually Si 

clusters are less likely (than pure silane condition) since the free bonds of Si are now 

occupied by Cl by the formation of SiClx. Eventually, this mechanism of occupying free 

dangling bonds by a Cl by HCl addition suppresses the Si gas phase nucleation compared 

to using just pure Silane.   

In another process instead of adding HCl into Silane a chlorinated silicon gas 

source is used. High growth rates (>100um/hr) were demonstrated in a condition of 

suppressed Si droplets using chlorinated silane precursors such as methyltrichlorosilane 

(Lu et al., 2005; Pedersen et al., 2007), trichlorosilane (F. La et al., 2008), 

tetrachlorosilane (M. A. Fanton, Weiland, & Redwing, 2008), methyle chloride 

(Kotamraju, Krishnan, & Koshka, 2009) and dichlorosilane  (Iftekher et al., 2011). The 

advantage of using a chlorinated silane unlike HCl addition into SiH4 described 

previously is that for chlorosilanes SiClx molecules are already present in the precursor 

gas which does not need any additional reaction to form. These SiClx molecules prevent 
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Si-Si bond and consequent Si cluster formation in a similar manner described earlier. 

Further, using for chlorosilanes the temperature can be increased without breaking Si-Cl 

bonds compared to the Si-H in silane since Si-Cl bond is stronger than Si-H. Thus 

chlorosilanes suppresses Si droplet formation and also parasitic deposition compared to 

Silane at higher temperatures. 

As noted in the above reports, use of chlorinated precursors represents an 

improvement over the use of conventional silane. Yet, many challenges still remain for 

commercial production of thick SiC epitaxial films. Increased visible morphological 

defects due to particulate downfall on the substrate caused by parasitic deposition is 

reported to be a limiting issue in achieving thick epitaxial layers (Burk et al., 2012). 

Particulate related defects were also pointed out to be reason for low yield of device 

quality material in thick epilayers grown by hot wall CVD (O'Loughlin et al., 2008). 

Hence, increased parasitic deposition and related particulates, which are directly related 

to various growth parameters (e.g. type of Si precursor (Rana, Song, Chandrashekhar, & 

Sudarshan, 2012b), temperature, pressure, gas flow rates and growth duration), are a 

crucial limiting factor preventing thick epilayers for commercial production. A 

systematic comparative study of parasitic deposition for various precursors in the reactor 

is essential to improve the epitaxial growth but does not exist in the literature. In this 

paper, we demonstrate that the growth condition in SiC epitaxy in terms of parasitic 

deposition and particulate formation can be improved much further using a fluorinated 

silane. 

Efficient decomposition of gases with stronger bonds requires higher temperature, 

although the likelihood of Si-cluster formation is also increased. Reaching higher growth 
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temperature without initiating parasitic nucleation is advantageous if a certain crystal 

requires higher surface diffusivity for efficient migration of atoms to their respective sites 

in the crystal. Thus different crystals may need different suitable gas chemistries for good 

growth. In silicon CVD epitaxy, a higher growth temperature (900°C-1200°C) 

(Grovenor, 1994), essential for single crystal growth, can be reached by using SiCl4 

instead of SiH4 without early dissociation and Si cluster formation. Here, the optimal Si-

dissociation/cluster formation balance discussed above is achieved by replacing SiH4 

with SiCl4. However, silicon carbide polytypes (e.g. 4H and 6H) require much higher 

growth temperatures (>1550°C) compared to the silicon CVD epitaxy. At these higher 

temperatures, with chlorinated species, decomposition of SixCly is significantly enhanced, 

leading to greater gas-phase nucleation, thus reducing the benefits obtained for lower 

temperature silicon growth and preventing achievement of high quality, thick silicon 

carbide epitaxy.  Hence, it is essential to find a suitable halogenated silicon precursor 

with stronger Si-X bond strength than Si-Cl for the high temperature silicon carbide 

epitaxy, beyond the conventional silicon CVD regime. This leaves only SiHxFy (x= 0, 1, 

2, 3 and y =4-x) gases as the remaining choices. 

It is to be noted that tetrafluorosilane (SiF4) was used to grow polycrystalline 

silicon carbide films deposited by low power radio frequency plasma decomposition 

(Cicala, Capezzuto, Bruno, Schiavulli, & Amato, 1996; Ganguly, De, Ray, & Barua, 

1991). SiF4 has also been used for growing micro-crystalline 3C-SiC on a Si substrate  

(Kida et al., 2008). However, high quality, homoepitaxial growth of 4H-SiC by high 

temperature CVD has not been reported. In this paper we report silicon carbide 

homoepitaxial (4H-SiC) growth using SiF4 with elimination of Si gas phase nucleation 
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and significant suppression of overall parasitic deposition and subsequent particulate 

downfall on the growth surface.  

3.2 EXPERIMENTAL SETUP  

Experiments were conducted in a homebuilt vertical hot wall CVD reactor. SiF4 was 

used as the silicon precursor. Conventional precursor gases SiH4 and DCS were also used 

for comparison. Propane was used as the carbon source while hydrogen was used as the 

carrier gas. Purity of the precursor gases was 99.999% whereas purity of the carrier gas 

was 99.9999%. Growths were carried out at a temperature of 1550°C and a pressure of 

300 torr for all three Si precursors. The C/Si ratio was maintained at 1. Commercially 

available 8mm x 8mm, 4H-SiC (Si face, 8° off cut towards 11 2 0 direction) substrates 

were used. Samples were cleaned following the standard RCA cleaning method. 

Simulation of temperature profile (Figure 3.2b) in the reactor was performed using 

Virtual Reactor, a commercial simulation tool (Bogdanov et al., 2001). The temperature 

was ramped up to 1000°C at 50°C/min. Propane was added at 1000°C (to mitigate excess 

substrate etching and consequent Si droplet formation  (A.A. Burk & Rowland, 1996) and 

the temperature was ramped up to 1550°C in 20 minutes. Hydrogen etching was 

performed for 5 minutes while stopping the flow of propane at 1550°C. Epitaxial growth 

was then initiated by flowing propane and the silicon precursor gases. The hydrogen flow 

rate was kept fixed at 6 slm and the pressure was maintained at 300 torr for the whole 

process. The thicknesses of the epilayers were measured using the Fourier transform infra 

red reflectance (FTIR). The mercury-probe C-V technique was used for measuring the  
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Figure 3.2 (a) Reactor geometry showing the position of the split gas-injector tube (left). 

Split tube before growth and parasitic depositions after growth are shown for different 

silicon precursor gases with propane and hydrogen. The locations from where the 

parasitic deposition starts are marked as 1, 2 and 3 for silane, DCS and SiF4 respectively. 

(b) Temperature profile in the reactor obtained using a simulation tool is shown. (c) Bar 

graph showing the masses of parasitic depositions on gas injector walls using silane, DCS 

and SiF4 precursor gases with and without propane addition. An ~80% reduction of 

parasitic depositions for SiF4 with propane and a ~100% reduction without propane was 

found. (T= 1550°C, P= 300 torr, H2 flow rate = 6 slm, propane flow rate = 1.6 sccm, Si 

precursor flow rates = 5 sccm and duration = 1hr). 
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doping concentration of the epilayers. Fixed C/Si ratios were maintained throughout 

the experiments for various gases and the doping (background) was achieved without 

introducing any intentional dopant.  KOH etching was performed to determine the defect 

density in the epilayer. X-ray diffraction rocking curve and Raman-spectroscopy were 

employed to determine the crystallinity of the epilayers.One of the difficulties using 

fluorinated chemistry is that they may easily react with the glass container and corrode 

them. However, SiF4 is one of the few fluorinated chemistries which is glass safe  

(Margrave & Wilson, 1971). It is to be noted that in the use of a fluorinated precursor, an 

important safety concern exists regarding the HF etching of the quartz glass enclosure] 

(Pedersen et al., 2012), assuming that  HF is formed as a byproduct of the fluorinated 

CVD process. However, even though HF is produced, anhydrous HF does not etch glass 

since the basic principle of glass (SiO2) etching by HF is that HF ionizes in water, and 

reacts with glass according to the following chemical reactions (Musket, Yoshiyama, & 

Contolini, 2002). 

  2322 HFOHOHHF  

OHSiFOHHFOHSiO 263232 3233  
 

As in the case of using chlorinated or other silanes, the reactor must be hermetically 

leak-tight and properly degassed (~1x10
-7

 torr) before the growth. Pre-baking of the 

furnace was performed before growth to remove any residual water vapor introduced into 

the growth chamber during sample transfer. Further, a graphite liner was used to shield 

the glass from direct contact with the hot gas as an additional precaution. An in line gas 

trap was used in the exhaust system to trap any HF produced during the growth. An HF 
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gas detector was used to ensure safety. Similar precautions were taken for HCl produced 

during growth using dichlorosilane.  

A split gas delivery tube system (gas injector made of SiC coated high purity 

graphite) was used to visualize parasitic deposition in the tube (Rana, Song, et al., 

2012a). This design is an effective tool to identify the location at which the gases start 

decomposing in the injector tube by the observation of parasitic deposition. In this 

scheme, the gas delivery tube was axially split into two halves, which was then 

reassembled for growth. The scheme is shown in Figure 3.2a where the split part of the 

gas delivery tube can be seen as PQ in the CVD reactor. The split halves were assembled 

together to form a complete tube before growth, and was separated again after the growth 

for post examination. The inside image of one half of the split tube before and after 

growth is shown in Figure 3.2a. Here it can be seen that the tube is clean before the 

growth. However, after growth, parasitic deposition, composed of different Si and C 

compounds, can be clearly seen. The location where gas decomposition begins prior to 

reaching the growth surface is estimated from the locations of parasitic deposition regions 

in the tubes. This technique is proven to be beneficial especially for comparing the extent 

of parasitic deposition for different gas chemistries in a CVD reactor.  

3.3 THERMO-CHEMICAL STUDY OF SiH4, SiH2Cl2 AND SiF4  

 

SiF4 is one the most stable gas molecules (Yershov, Orlov, Petrov, & Prokhorov, 

1993). The Si-F bond is the strongest among all silicon precursors with the highest 

dissociation bonding energy (Si-F: 565kJ/mol vs, Si-Cl: 381kJ/mol; Si-H: 318 kJ/mol; Si-

C: 318 kJ/mol, Si-Br: 309 kJ/mol and Si-I: 234 kJ/mol) (Gutmann, 1967; Huheey, 1972). 

The higher dissociation bonding energy of a gas molecule requires a higher temperature 
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for thermal decomposition. In the case of chlorinated silanes with a weak Si-Cl bond, 

hydrogen reacts and reduces chlorosilanes starting at 1000°C for tetrachlorosilane (SiCl4) 

or even at lower temperatures for silicon chlorohydrides (SiHCl3, SiH2Cl2). On the other 

hand, SiF4, with the strongest Si-F bond is reduced by hydrogen at much higher 

temperatures- starting only above 2000°C (Collins, 2000). This ability of SiF4 among all 

Si precursors to remain inert in hydrogen environment even until 2000°C is the reason for 

the effective elimination of liquid Si droplet formation and Si parasitic deposition 

observed at SiC growth temperatures. This highly stable chemically inert SiF4 gas in H2 

environment has the least possibility of forming Si aerosol from molecular collision due 

to lack of reactive free radicals in the gas.  

The Gibbs free formation energies of the thermal decomposition reactions of SiF4 

compared to that of SiH4 and SiH2Cl2 are shown in Figure 3.3. Three main thermal 

decomposition reactions are considered for their free formation energies for 0 to 2000°C 

calculated from thermo-chemical data [JANAF] (kinetics.nist.gov/janaf/).  

Thermal decomposition reactions are:  

SiH4  Si (g) + 2H2                                                                      (1) 

SiH2Cl2  Si (g) + 2HCl                                                                       (2) 

SiF4  Si (g) + 2F2                                                                                                                        (3) 

In these reactions Si gas precursors are completely decomposed into elemental Si 

liberating four of its occupying bonds in Si. Gibbs energies of these reactions are shown 

in a graph (Figure 3.3). For a certain temperature, higher Gibbs free energy indicates less 

favorable reaction compared to the reaction with lower free energy. In Figure 3.3, it is 
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clearly shown that the thermal decomposition of SiF4 and formation of elemental Si is 

extremely difficult compared to SiH4 and SiH2Cl2. From the graph in Figure 3.3 it is 

understood that even partial decomposition of SiF4 and formation of SiF, SiF2, SiF3 

radicals are highly unlikely at the temperatures shown in Figure3.3. Thus SiF4 eliminates 

Si gas phase nucleation than any other Si precursor gases due to its very high stability at 

high temperature conditions.  

 

Figure 3.3Temperature versus Gibbs free energy of thermal decomposition reactions of 

SiH4, SiH2Cl2 and SiF4 showing very less favorable thermal decomposition reaction for 

SiF4.  

From the above discussion we find that there should be less Si gas phase 

nucleation if the gas is more stable (less reactive). Here the chemical reaction in the gas is 

suppressed due to the higher stability of the gas. The same argument is applied for the 

epitaxial growth. For epitaxial growth, chemical reaction at the surface should also be 

suppressed due to inertness of the high temperature gas. If the molecule is more stable (or 

less reactive) then the crystal growth rate should also reduce. Now, the question arises 

SiF4  Si (g) + 2F2 

 

SiH4 Si(g) + 2H2 



www.manaraa.com

 

79 

 

that if the stable, less reactive Si precursor gases reduce the crystal growth rate then how 

it can be beneficial for epitaxial growth.  

If the gas is highly unstable, e.g. SiH4, ideally, it should increase the epitaxial 

growth provided that there are no Si precursor losses. However, practically  SiH4 starts 

faster reaction in the gas to each other very early in its flow path and in fact depletes Si 

source by excessive parasitic deposition and gas phase nucleation related precursor 

losses. As a result, higher reactivity of SiH4 reduces the growth rate by increasing the Si 

losses due to gas phase nucleation and parasitic deposition. This condition not only 

reduce the growth rate but also degrades the crystal quality since particles produced in 

this process is carried to the growth surface.  

On the other hand, when a stable gas is used (i.e. halogenated silanes), the growth 

rate should decrease due to the higher stability of the gas. However, even though the 

growth rate at the crystal surface should be reduced due to less reactive, stable gas 

molecules but suppression Si cluster formation and parasitic deposition increases the 

availability of Si precursor and increases the growth rate at the growth surface. At this 

condition, growth rate is compensated and increased by the increased availability of Si 

source gas at the surface.  

It may appear that too strong Si-F bonds in SiF4 would prohibit SiC epitaxial 

growths since reactive Si containing free radicals with dangling bonds are assumed to be 

absent in the gas stream. Previously (Pedersen et al., 2007) considered fluorinated gases 

not to be a choice of SiC CVD epitaxial growth due to too strong Si-F bond. We have 

observed experimentally that when no propane was added, a mixture of SiF4 and 

hydrogen indeed results in no silicon deposition in the gas injector wall (Figure 3.2c) and 
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on the substrate. This result leads us to believe that there should be no epitaxial growth of 

SiC using SiF4 as well. However, deposition on the reactor walls and epitaxial SiC 

growth took place when propane was added (Figure 3.2c). This deposition possible with 

presence of a hydrocarbon gas indicates that the hydrocarbon plays an important role in 

SiC growth by SiF4 even though SiF4 itself is much stable in a hydrogen environment.  

Another reason for which growth is possible even using highly stable SiF4 gas is 

because the surface reaction is considerably different than reactions in the gas. A gas, 

which is extremely difficult to be decomposed, still may participate in the growth at the 

surface of the crystal. As an example, nitrogen triple bond is one of the strongest bonds in 

the nature with a dissociation bonding energy of 945 kJ/mole. This bond is extremely 

unlikely to be decomposed at regular growth temperatures. However nitrogen is widely 

used for n-type dopant indicating even strongest nitrogen triple bond is broken at the 

surface where surface works as a catalyst to initiate the reaction. In a similar process it is 

also possible that SiF4 molecule is broken at the surface of the substrate and takes part at 

the surface reaction and enables crystal growth.  

In this chapter, we report the first homoeptixial growth of SiC films in a Si droplet 

free, parasitic deposition suppressed growth condition. The chemical route and surface 

reaction for the growth mechanism using SiF4 is the subject for future detailed 

investigation.  

Silicon CVD techniques are often used as guidance for silicon carbide CVD 

(Pedersen et al., 2011). The reason for which a fluorinated silane is not a suitable gas for 

silicon CVD is because the Si-F bond strength  is too high and the growth temperatures 

are low, which must remain <1400°C, i.e. the melting temperature of silicon. 
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Furthermore, SiF4 is an etchant for silicon at above 1150°C since SiF4 (g) + Si (s) → 

2SiF2 (g) (Timms, Kent, Ehlert, & Margave, 1965) and obviously cannot not be a choice 

of silicon growth by typical CVD methods. The aspect of Si etching by SiF4 will be 

discussed in details in Chapter 4. However, silicon carbide CVD is considerably different 

than silicon CVD. Unlike the silicon CVD, typically, much higher temperature is needed 

for silicon carbide CVD (melting temperature of SiC is ~2700°C). The chemistry of 

silicon carbide CVD is fundamentally different from silicon CVD due to the presence of a 

hydrocarbon gas. At these high temperatures and with hydrocarbon addition needed for 

silicon carbide epitaxy, even SiF4 with strong bonds participates in silicon carbide 

epitaxial growth as described in the later sections.  

3.4. STUDY OF PARASITIC DEPOSITION USING SIH4, SIH2CL2 AND SIF4 

 

To study parasitic deposition, which also indicates how early the gas decomposes in 

the reactor, the split gas injector tube as described in the experimental section is utilized. 

The photographs in Figure 3.2a qualitatively show the degree of parasitic deposition and 

the approximate location where the parasitic deposition begins taking place in the gas 

delivery tube for SiF4 in comparison with conventional gases. In Figure 3.2a, three split 

gas injector tubes (their location shown in the reactor geometry) are shown after the 

epitaxial growths with different gases using the same growth conditions. A gas mixture of 

a silicon precursor gas (SiH4 / DCS/ SiF4) with or without propane, along with hydrogen, 

enters the cold end of the tube, and exits the hot end towards the growing crystal. During 

this travel, silicon/carbon compounds deposit on the tube wall starting at ~700°C, ~950°C 

and ~1200°C for SiH4, DCS and SiF4 precursors respectively (estimated from Figure 

3.2b). Clearly, from Figure 3.2a, for similar growth conditions in the reactor, SiF4 begins 
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parasitic deposition in the presence of propane much later in the gas stream (202mm from 

inlet) producing the least amount of parasitic deposition compared to SiH4 (111mm) and 

DCS (126mm) due to the highest Si-F bond energy (565 kJ/mol) of SiF4. The measured 

weight of these depositions from the weight difference of the injector tube measured 

before and after growth is shown in a bar graph in Figure3.2c. 

For SiF4, approximately ~0mg of Si deposition (compared to 341mg for SiH4 and 

235mg for DCS) was measured for the case without propane indicating Si deposition-free 

condition in the reactor- essential for high quality growth in a clean reactor environment 

(implying no Si pyrolysis and elimination of Si gas phase nucleation due to strong 

bonds). On the other hand, using SiF4, parasitic deposition began with propane addition. 

With this propane addition, only 71mg of parasitic deposition took place on the gas 

injector tube for SiF4 compared to 370mg and 323mg respectively for SiH4 and DCS. A 

~80% suppression of parasitic deposition was achieved using SiF4, whereas no significant 

difference was observed for DCS and SiH4 gases. This significant suppression of 

parasitic deposition obtained using SiF4 is an important consideration for achieving high 

quality thick epitaxy by long duration growths (Burk et al., 2012). Suppression of 

parasitic deposition using SiF4 does not only improve the crystal quality by minimizing 

parasitic particles originating from the reactor parts but also increases the re-usability of 

the reactor parts, which is an important factor to reduce the growth cost. 

3.5. COMPARISON OF EPITAXIAL GROWTHS USING SIH4, SIH2CL2AND SIF4 

 

A large number of particulate related defects (Figure 3.4) were observed for the 

growth using SiH4 at 5sccm for one hour growth at a growth rate of ~7μm/hr. These large 

particles were directly related to the degradation of the reactor parts due to severe 
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parasitic deposition and their consequent particle downfall on the growth surface. Long 

duration growth with good morphology was not possible in this case. The density of 

particle related defects is shown in Table 3.1. Growth using DCS exhibited somewhat  

 

Figure 3.4 Particles on epilayer surface grown using various gas precursors at similar 

growth condition. No large particle related defects are observed for the epilayer grown 

using SiF4 even at higher flow rates. (T= 1550°C, P= 300 torr, H2 flow rate = 6 slm and 

duration = 1hr).  

 

Table 3.1 Comparison of epilayer quality using various precursors for (T= 1550°C, P= 

300 torr, H2 flow rate = 6 slm, C/Si =~1 and growth duration = 1hr; substrate 

E2(TO)/E1(TO) or 4H/3C peak ratio = ~32, substrate doping = ~1x10
19

-N-type and 

substrate XRD FWHM = ~20 arcsec).  
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DCS 5 10 ~50 5x1016 p ~0.4nm ~12 0 ~45 ~100 ~2x103 

SiF4 10 30 ~60 1x1015 n ~0.3nm ~7.5 0 0 ~5 ~50 

a 
epilayer surface significantly degrades with particulates at these flow rates (5 sccm) for 

silane and DCS. However, growth is improved due to suppression of particulate using 

SiF4 even for higher flow rates (10 sccm). Figure 3.4. represents the growth surfaces at 

these flow rates. 

b 
excluding the particulates in the epilayers  
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lower density of particles (due to lower  parasitic deposition). Long run growths with 

good quality epilayers were still not possible even at this growth condition due to these 

particles. On the other hand SiF4 suppressed parasitic deposition and gas-phase 

nucleation significantly and a much higher growth rate (30μm/hr) was achieved by 

increasing the mass transport to 10sccm. In this cleaner growth environment achieved 

using SiF4, long duration growth (4 hours) with good quality epitaxy was possible and 

films up to 120μm thicknesses were grown at a growth rate of 30μm/h. A comparison of 

particulates generated during growth using three different Si precursors is shown in Table 

3.1. Large particles on the epitaxial layer, mostly generated from loosely bound particles 

formed due to parasitic deposition in the gas delivery pathway were eliminated using SiF4 

gas by suppressing parasitic deposition as described earlier.  

For SiF4, a lower density (~ 5 cm
-2

) of smaller sized particles (10µm-30µm) 

compared to silane and DCS mediated growths were observed (Table 3.1). Also, pits of 

1μm -3μm size were significantly reduced using SiF4 compared to silane and DCS (Table 

3.1). We believe that these morphological defects were not growth related and mostly 

appeared because of downfall of particles during the loading of substrate in the reactor 

(located in a non-cleanroom environment). To confirm particle downfall during sample 

loading, the sample was loaded in the reactor, evacuated, and kept for 12 hours typical to 

reach high vacuum. The substrates were then unloaded without growth and particles were 

indeed observed on the surface by Nomarski microscope.  
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Figure 3.5 AFM image of a 60um thick epilayer with excellent surface morphology 

grown using SiF4. 

Morphologically, a very smooth surface (RMS roughness ~0.3nm) was observed for 

a ~60um thick epilayer grown at 30μm/hr for 2 hours using SiF4 (Figure 3.5).  The 

surface roughness does not increase much for thicker (~120um grown over 4 hours) 

epilayers (RMS roughness ~0.5nm vs. ~0.3nm) using SiF4. 

 

 

 

 

 

 

 

Figure 3.6 Raman analysis for epilayers grown using (a) silane, (b) DCS and (c) SiF4. A 

higher E2(TO)/E1(TO) peak ratio for the epilayer grown using SiF4 (c) indicates improved 

polytype uniformity compared to growths using silane (a) and DCS (b). High LOPC 

mode peak intensity for SiF4 grown epilayer (c) is indicative of lower dopant 

incorporation compared to epilayers using silane (a) and DCS (b). 

The ratio of the 4H peak (E2 transverse optic or TO mode at 776cm
-1

) and 3C peak 

(E1 transverse optic or TO mode at 796cm
-1

) (Iftekher et al., 2011; Nakashima & Harima, 
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1997) of a Raman scattering spectrum provides indication of the polytype uniformity. 

The higher peak ratio of the E2 (TO) and E1 (TO) demonstrates lower formation of 3C 

polytype in the epilayer  (Iftekher et al., 2011). Typical E2(TO)/E1(TO) peak ratio 

(4H/3C) was found to be ~60 for the epilayers grown using SiF4, indicating improved 4H 

polytype uniformity (Table 3.1), whereas ratios for the epilayers grown using silane and 

DCS were found to be ~30 and ~50 respectively. Here it is noteworthy that the typical 

E2(TO)/E1(TO) peak ratio of the original substrates used for these growths was ~32.  

 

Figure 3.7 X-ray rocking curve of a epilayer grown using SiF4 gas with a FWHM of ~7.5 

arcsecond. 

The increased height of the LOPC (longitudinal optical phonon-plasmon coupled) 

mode peak found at ~964 cm
-1

 for SiF4 (Figure 3.6c) denotes lower free carrier densities 

(Nakashima & Harima, 1997) or lower doping concentration compared to silane (Figure 

3.6a), and DCS (Figure 3.6b) mediated epilayer growths for the same inlet C/Si ratios. 

The doping concentrations for the epilayers are shown in Table 3.1. N-type epilayers 

(background doping) were found for SiF4 mediated epilayers, whereas SiH4 and DCS 

resulted in p-type epilayers for the same inlet C/Si (Table 3.1). According to site 

competition epitaxy (A.A. Burk & Rowland, 1996), the growth performed in SiF4 takes 
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place in a lower effective C/Si ratio or Si rich condition, which is possibly a consequence 

of increased Si species at the growth surface compared to SiH4 and DCS growths, i.e. 

SiF4 suppresses Si losses (due to parasitic deposition and gas phase nucleation) more 

efficiently than SiH4 and DCS. Fluorine might have an influence on dopant incorporation 

and cause of lower doping using SiF4 and will be subject for further investigation. 

X-ray rocking curves were obtained to measure the crystalline quality of the 

epilayers grown using  SiF4. The X-ray rocking curve full width half maxima (FWHM)  

of various epilayers, indicating good crystal quality, were  reported to be 7.8 (Iftekher et 

al., 2011), 10 (Pedersen et al., 2007), 11 (R.L. Myers et al., 2005), 18 (Lu et al., 2005) 

and 22-25 (M. Fanton et al., 2004) arcseconds.  The typical (FWHM) of a 60um thick 

sample using SiF4 was ~7.5 arcsecond (Figure 3.7), which is an indication of good 

structural quality comparable to the published literature. The lower value of FWHM 

epitaxial layers grown using SiF4 compared to silane and DCS indicates superior crystal 

structure (Table 3.1). 

 

Figure 3.8 Room temperature PL spectrum of a SiC epilayer grown using SiF4 

demonstrates peak at 3.17eV. 
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The room  temperature  photoluminescence (PL) spectra (Figure 3.8) shows the 

typical exciton/band edge peak for 4H SiC at 3.17eV (391nm)
 
(Klein et al., 2006), 

indicating no change of bandgap of the SiC epilayer grown using fluorine chemistry. 

Finally, thick (~100um) epilayers were etched using molten KOH solution for defect 

delineation. Typically, very low basal plane dislocation (BPD) density ~20/cm
2

 was 

observed for the epilayers grown using SiF4. The density of threading screw dislocations 

(TSD) was found to be similar to that in the substrate. Carrot defect was found to be 

typically ~0 cm
-2

, further confirming good quality epitaxy using SiF4.
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CHAPTER 4  
 

SiC SURFACE PREPERATION (ETCHING) BY SiF4 

4.1 INTRODUCTION 

 

Silicon carbide is a promising material for next generation high voltage (>10kV), 

low weight, compact power electronics due to its various outstanding properties such as 

wide bandgap, high breakdown electric field, lower intrinsic carrier concentration, high 

saturation velocity, high mobility and high thermal conductivity (Neudeck, 2006). 

Demand for high quality, thick epitaxial growth of SiC is growing rapidly for high 

voltage or high power electronics. To achieve high quality thick epitaxy, it is essential to 

suppress silicon gas phase nucleation or cluster formation by HCl addition or using 

chlorinated precursors such as Methyltrichlorosilane (SiCH3Cl3), tetrachlorosilane 

(SiCl4), trichlorosilane (SiHCl3), or dichlorosilane (SiH2Cl2) (Crippa et al., 2005; F. La, 

Galvagno, Roccaforte, et al., 2006; F. La et al., 2008; M. A. Fanton et al., 2008; Iftekher 

et al., 2011; R. L. Myers et al., 2005; Pedersen et al., 2007).  

Recently, the authors’ group reported on tetrafluorosilane (TFS or SiF4) precursor 

gas for high quality homoepitaxial growth (Rana, Chandrashekhar, & Sudarshan, 2012), 

and demonstrated superior abilities in reducing, and even eliminating gas phase 

nucleation and parasitic deposition. Parasitic deposition, while a severe problem, is rarely 

explicitly treated in the literature, as it is difficult to quantify. Parasitic deposition on 

reactor parts leads to loose particles in the system which deposit on the growing epitaxial
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 layer, leading to in-grown defects that degrade the epitaxial layers (Rana, 

Chandrashekhar, et al., 2012). TFS is expected prominence in future as a Si precursor due 

to its ability to eliminate Si gas phase nucleation and suppress parasitic deposition and 

related particulates significantly in the reactor (Rana, Chandrashekhar, et al., 2012). A 

study of SiC substrate etching using TFS in comparison to the other precursor gases is 

essential in order to understand and optimize the growth using TFS since the competition 

between growth and etch determines the net growth rate during epitaxy (VanMil et al., 

2009). 

Importantly, it will be an added advantage if the growth species can also be used 

as an etchant of the SiC substrate during the CVD process. Using the same Si growth 

precursor as an effective etchant of the substrate will minimize engineering challenges 

associated with gas switching transients as the process shifts from etching to growth 

initiation. 

4.1.1 EX-SITU PRETREATMENT OF THE SURFACE: LAPPING, MECHANICAL 

POLISHING AND CMP 

 

After slicing the boules into wafers using diamond wire saw, SiC surface is 

opaque and heavily marked with wire saw cutting scratches. The surface is not flat at this 

point. The first step to prepare the surface for further processing is lapping. Here the 

surface is constantly lapped using some very large grains of B4C particles (20um-100um) 

with an applied pressure of 50-200gm/cm
2 

by using an iron plate. The surface after the 

lapping process is extremely rough with a roughness of over 100nm (RMS). During this 

time high numbers of pits are generated on the surface and FWHM of the surface is 

around 122.4 arcsec (compared to ~7 arcsec for the best quality surface). Surface of these 

wafers after lapping is then polished using micron size (~1um diameter) diamond 



www.manaraa.com

 

91 

 

polishing compound mixed in water. The surface is repetitively polished by a pad at room 

temperature until it becomes mirror-like. This process is called mechanical polishing 

since the granular diamonds interact with the surface only mechanically and no chemical 

reactions takes place between the diamond and the SiC surface since both of them are 

chemically inactive at room temperature. The surface roughness achieved by this process 

is usually around 1nm-3nm (RMS). Though mechanical polishing improves the surface 

quality dramatically compared to the surface found after lapping process but deep scratch 

marks are left on the surface due to movement of micrometer size large diamond particles 

on the surface under applied force. The surface smoothness can be improved further by 

using finer diamond particles (submicron size). However, the surface damages cannot be 

completely eliminated (X. Chen et al., 2006). As a result, after the mechanical process, 

residual surface and subsurface damages remain at the surface. While the subsurface 

damages after the mechanical polishing are buried under the surface and not visible from 

the top, the surface damages are easily observable by an AFM. These damages are also 

barely observable at higher magnifications by Nomarski microscopy. So, at the end of 

this process two types of surface imperfections remains. They are i) visible surface 

scratch marks and ii) invisible sub surface damages. Newly generated defects (dislocation 

loops) in the epilayer along with the polishing related scratch marks are reported (Grim, 

Benamara, Skowronski, Everson, & Heydemann, 2006). No study has been conducted yet 

for the influence on the subsurface damages on epilayer growths. 
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Figure 4.1 Surface and subsurface damages are shown I. Initial state II. Force is applied 

on the diamond particle and SiC crystal is deformed, initiating surface and subsurface 

damages. 

 Sub surface damages takes place mainly due to the plastic deformation of the 

crystal due to the shear force exerted on the surface through the abrasive particles 

(diamond) by the polishing pad. Surface damage and subsurface damages are shown in 

Figure 4.1. Initially lateral and vertical forces are applied on a diamond particle by a 

polishing pad shown in Figure 4.1(I). Since diamond is harder than SiC an impression of 

the movement of the diamond particle is created on the surface as AC in Figure 4.1 (II) 

depending on the size of the diamond particle. This impression AC can be seen from the 

top using microscope. Due to the shear force applied, also plastic deformation takes place 

in the crystal  The visible scratch marks after the mechanical polishing are flattened by a 

chemical-mechanical polishing process. Here some finer (~50nm diameter) abrasive 

particles are used (e.g. Cr2O3, SiO2, NaOH etc.) at an elevated temperature. In this 

chemo-mechanical polishing process, instead of mechanical interaction, the abrasive 

particles react chemically with the surface of the SiC, oxidize it and then the oxidized 

surface is removed mechanically by a rotating pad.  Unlike the lapping or mechanical 

polishing, chemo-mechanical polishing is much slower. 
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Now, here it is important to note that the surface damage can be completely 

removed by the removal of the top layer with a thickness of AB (Figure 4.1). At this 

stage, very smooth, atomically flat surface is found; however subsurface damage (BC in 

Figure A1) will still be present and buried under the surface. It is important to note that 

even though in Figure 4.1 only subsurface damage due to the mechanical polishing by 

diamond particle is shown, in reality subsurface damage will be present due to slicing and 

lapping processes. Hence the thickness of the layer on top with subsurface damage might 

actually be much thicker.   

These subsurface damages can be made visible by some electro-chemical 

technique where bias is applied on the CMP substrate immersed in electrolytic CuSO4 

solution for 15 minutes at 30V (Figure 4.2a). After this process the subsurface damages 

are decorated (Figure 4.2b). This experiment proves that despite smooth surface after 

CMP, the electrical behavior of the subsurface damage related stress points are different 

from the rest of the surface. Though no detailed study on the effect of these subsurface 

damages on epilayer growth are done yet, but it can be assumed that ideally they should 

not be present for good growth since these stress regions will propagate in the epilayer 

and may generate defects. The subsurface damage related issues are still not quantified 

and no specification is provided from the manufacturer’s side. Hence despite atomically 

flat surface is achieved after CMP, it is still essential to treat the surface further (in situ) 

before the epitaxial growth by some dry etching technique to remove a certain amount of 

material from top without further degrading the surface. 
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Figure 4.2. a) Electrochemical setup. b) Decoration of subsurface damages after 

electrochemical treatment of SiC wafers in CuSO4 solution. 

 

5.1.2. IN SITU DRY ETCHING TECHNIQUES 

In situ dry etching is an important step performed before the initiation of epitaxial 

growth, where various polishing related surface and sub-surface damage (Sanchez et al.), 

and contaminants on the surface are removed in order to expose the dangling bonds on 

the SiC substrate for growth. This is done to minimize the potential for in-grown defects 

in the epitaxial layer originating from the substrate/epilayer interface, as sub-surface 

polishing damage induces dislocations and defects extending below the substrate surface  

(Sanchez et al.).  Thus, if the etching process is too slow, it will not be effective in 

removing this damage. This process is typically done in a hydrogen ambient 

(Ramachandran, Brady, smith, & Greve, 1998) with or without C3H8  (VanMil et al., 

2009) and/or HCl gases (Nakamura et al., 2000). Optimization of the surface by etching 
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is not only important for SiC epitaxial growth, but also for epitaxy of III-V materials 

(GaN) where SiC substrates are used.  

It was reported that pure hydrogen etching induces excess Si and forms droplets 

on the surface which is undesirable for SiC surface preparation (A.A. Burk & Rowland, 

1996). This excess Si and consequent liquid Si droplet formation on the surface can be 

prevented either by HCl or propane addition in hydrogen (Nakamura et al., 2000; VanMil 

et al., 2009). The mechanism of the Si droplet suppression by using HCl or propane will 

be discussed in a later section, where we will argue that Si-removal is the limiting factor 

or the bottleneck for etching of SiC. 

It has been shown that pure hydrogen etching introduces morphological 

imperfections by delineating defects on the SiC surface (Bondokov, Tipirneni, & 

Sudarshan, 2004; Hassan, Bergman, Henry, & Janzen, 2008). These defects were 

reported to be reduced by introducing silane during the pre-growth etch, which improved 

the morphology of the pre-growth surface and consequent epitaxial growth (Fujihira, 

Kimoto, & Matsunami, 2003; Hassan et al., 2008). Silicon rich etching by silane (SiH4) 

addition results in a different surface chemistry than etching in pure hydrogen (Leone et 

al., 2010), leading to an improved surface morphology. U. Starke et al. demonstrated that 

in a Si-rich condition, the SiC surface reconstruction changes, thereby changing the 

surface energetics (Starke, Schardt, Bernhardt, Franke, & Heinz, 1999) which is the 

reason for the improved epitaxial quality. 

Etching under a Si-rich condition has been reported using SiH4 addition. 

Halogenated silanes can also be added during hydrogen etching, but these studies have 

not been reported. The surface etching mechanism by addition of halogenated silanes is 
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much different than using just pure silane due to two reasons. Firstly, at similar 

conditions, silane, due to its weaker Si-H bond (Table 4.1) decomposes and forms 

elemental Si in a greater amount than halosilanes. Secondly, halosilane gas molecules 

contain halogen elements resulting in different chemistries compared to silane (A 

Veneroni & Masi, 2006).  

Table 4.1  Dissociation bonding energies of various bonds found in Si precursors 

Bond Dissociation bonding energy 
kJ/mol  

Si-F 565 
Si-Cl 381 
Si-Br 309 
Si-I 234 
Si-H 318 
Si-Si 222 
Si-C 318 

 

In this chapter, we compare the etching of the SiC surface using TFS to that using 

chlorinated silicon precursor, dichlorosilane (SiH2Cl2, or DCS), and show TFS to be a 

superior etching agent for substrate pretreatment. These results are compared to that 

using propane. We argue that the same reasons that make TFS a superior growth 

precursor for SiC CVD (Rana, Chandrashekhar, et al., 2012) are the reasons that make it 

a superior pre-growth surface etchant. 

 

4.2 EXPERIMENTAL 

4.2.1 SETUP 

Experiments were conducted in a vertical hot wall CVD reactor. 4H-SiC 

substrates with 8°, 4° and 0° off cut towards <     > direction are used in a vertical hot 
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wall CVD reactor. Reactor pressure during etching (pre-treatment) was kept at 300 torr 

and the temperature was fixed at 1600°C. The temperature was ramped up to 1600°C 

from room temperature in 30 minutes in a pure hydrogen ambient.  

For different experiments, the H2 flow rates were varied while the precursor gas 

flow rates and various etching conditions (e.g. pressure, temperatures) were kept fixed. 

The etching was then performed for 1 hour for all experiments and then the temperature 

was ramped down in pure hydrogen. For these experiments, the susceptor or sample 

holder was made of TaC coated graphite and the gas injector was made of SiC coated 

graphite. The reactor reported in this paper is regularly used for SiC epitaxial growth 

(Rana, Chandrashekhar, et al., 2012) and hence new graphite parts without any parasitic 

deposition were used to avoid any unintentional growth caused by sublimation of 

deposited material on the reactor parts during etching. It is noteworthy that in these 

experiments only DCS generated severe liquid Si droplets on the reactor parts. To avoid 

Si contamination in subsequent experiments using H2/TFS or C3H8, the DCS experiments 

were performed at the end and a separate set of reactor parts was used. SiC etch rates and 

Si deposition rates were determined by mass measurement of the substrates before and 

after the etching and they were correlated to the measurements using Fourier Transform 

Infrared (FTIR) spectroscopy with an error of +/-5%. Surface morphology was 

characterized using atomic force microscopy (AFM). Gibbs formation energies of the 

reactions were calculated for 1800K, 1900K and 2000K for different reactions using 

JANAF thermo-chemical data (kinetics.nist.gov/janaf/). Raman spectroscopy analysis 

was also performed on the etched epilayers to confirm Si deposition (Nakashima & 

Harima, 1997). 



www.manaraa.com

 

98 

 

4.2.2. GIBBS FREE ENERGY CALCULATION 

If P and Q are the reactants then at a certain temperature or pressure condition 

there are two possibilities for a chemical reaction:. i) they will react with each other 

spontaneously and release energy (exothermic reactions). ii) they will not react with 

each other until some additional energy is applied on them (endothermic reactions). In 

simple terms these energies related to chemical reactions are called Gibbs energy 

(kJ/mol or kcal/mol) or Gibbs free energy or free formation energy or free enthalpy.  

By knowing the Gibbs energy it is possible to know whether the reaction is 

favorable or not at a certain condition. Also it is possible to know the phase of the 

reactants at the temperature or pressure condition from the Gibbs energy.  

Gibbs energy can be calculated for a reaction by the following formula 

                          

                                                        

Or, 

                                  

If ΔG >0, the reaction is endothermic (additional energy required) 

If ΔG < 0, reaction is spontaneous (it will release energy) 

If ΔG = 0, reaction is in equilibrium. 

If the Gibbs free energy of reaction A (say) is smaller than that of reaction B, then 

reaction A is more favorable to happen than reaction B.  However, it is not correct to say 
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that reaction A will definitely occur instead of reaction B. By Gibbs energy, in general, 

the favorability of a reaction (over another) is only stated.  

Gibbs energy of a reaction can be calculated from the known Gibbs energy of the 

reaction constituents of the reaction. These values are found from existing thermo-

chemical data e.g. JANAF. 

As an example let us calculate the Gibbs energy of the following reaction at 1900K and 1 

atm pressure, 

SiF4 + Si (l) = 2SiF2 

From the JANAF thermo-chemical data, at 1900K, we find that  

ΔG for SiF4 = -319.26 kJ/mol 

ΔG for SiF2 = -151.67 kJ/mol 

ΔG for Si(l) = 0 kJ/mol 

Hence ΔG of the reaction 

= 2 x (-151.67) – (-319.26) – 0     

= 15.9 kJ/mol 

4.3 RESULTS AND DISCUSSION 

4.3.1 ETCH RATES WITH VARIOUS GAS PRECURSORS (8° OFF CUT) 

Etch rates using different precursor gases are shown in Figure 4.3, where H2 gas 

flow is varied while keeping the precursor gas flow, pressure, temperature fixed. In other 

words, the dilution of the precursor gas is varied. The etch rates in pure H2 at different 

flow rates in Figure 4.3 are considered to be the baseline reference for comparing etching 
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with different chemistries (DCS, TFS). When pure hydrogen is used, the etch rate of SiC 

decreases for lower hydrogen flow rates (Figure 1) and the SiC etching is limited by the 

slower Si removal process of thermal evaporation by reaction (5) in Table 4.2.  

 
Figure 4.3 Etch rates using various precursor gases with various concentrations in H2 gas 

with dominant reaction numbers found in Table 4.2. Both DCS and Propane mitigate the 

etching of hydrogen whereas TFS enhances the hydrogen etching. Etch rates using TFS 

increases at higher concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substrate with Si 

deposition 

Substrate without Si deposition 

DCS 

SiF4 

Time = 1 hr; Si face 

T = 1600°C 

#11, 

14*  

#11, 5*  

#, 15, 5(backward by 

Si)*  

# 12(backward by C3H8)  

* reaction numbers refer to Table-2  
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Table 4.2 Free formation energy (kcal/mol) for various SiC etching reactions calculated 

from JANAF thermo-chemical data (kinetics.nist.gov/janaf/) 

 Reaction 1800K 1900K 2000K 

 

 

Dissociation and evaporation reactions 

  

1 SiC(s) → Si(s) + C(s) 13.72 13.53 13.344 

2 SiC(s) → Si(l) + C(s) 12.90 12.00 11.116 

3 SiC(s) → Si(g) + C(s) 58.19 54.60 51.183 

4 SiC(s) → 1/2Si2C(g) + 1/2C(s) 36.99 34.69 32.4175 

5 Si(l) → Si (g) 45.29 42.59 39.904 

Hydrogen reactions   

6 SiC(s) + 1/2H2(g) → Si(g) + 

1/2C2H2(g) 

73.44 69.23 62.085 

7 Si(l) + 1/2H2 → SiH(g) 44.81 43.12 41.44 

8 Si(l) + 2H2(g) → SiH4(g) 48.96 52.02 55.07 

9 C(s) + 3/2H2(g) → CH3(g) 42.86 43.47 44.08 

10 C(s) + 2H2(g) → CH4(g) 25.94 28.62 31.29 

11 2C(s) + H2(g) → C2H2 (g) 30.50 29.26 28.03 

12 2C(s) + 2H2(g) → C2H4(g) 44.34 46.34 48.20 

Halogen reactions   

13 SiF4 → Si (g) + 2F2 368.90 362.20 355.32 

14 Si (l) + SiF4  →  2SiF2 (g) 19.69 15.93 12.22 

15 SiH2Cl2 → Si (g) + 2HCl 30.17 24.21 18.25 

16 Si(l) +2HCl → SiCl2 + H2 -4.06 -3.79 -3.5 

17 C(s) + 1/4SiF4 → CF + 1/4Si(g) 107.83 103.65 99.52  

18 C(s) + 1/2SiF4 → CF2 + 1/2Si(g) 128.23 124.16 120.19  

19 4C(s) + 3SiF4 → 4CF3 + 3Si(g) 184.63 180.62 176.69 

20 C(s) + SiF4 → CF4 + Si (g) 211.04 206.36 204.56  

21 2C(s) + 1/2SiF4 → C2F2 + 1/2Si (g) 175.24 171.05 175.24 

 

Contrary to etch rates found in pure hydrogen, when TFS is added to the 

hydrogen, the SiC etch rate increases significantly (Figure 4.3). The higher etch rates 

using TFS at lower H2 flow rates (Figure 4.3) can be explained by the increased Si 

removal rate by increased rate of chemical reaction (14) in Table 4.2, as discussed earlier. 

At a lower H2 flow rate, holding the TFS flow rate constant, the partial pressure, and 

hence, concentration of TFS is higher, driving the reaction (14), in Table 4.2 to the right. 

At a TFS/H2 ratio of 0.05, a significantly higher etch rate of 43 µmh
-1 

was observed 
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compared to that without TFS addition, which gave an etch rate of only 1.8 µmh
-1

.  This 

significantly higher etch rate achieved by TFS addition shows that in an H2 ambient 

(usually at high H2 flow rates i.e. abundance of H2), SiC etch rate is mainly limited and 

controlled by efficient removal of Si (in our case reaction 14 in Table 4.2) but not by C 

removal rate by H2 by reactions (10, 11 in Table 4.2).  

For the case of pure H2, the surface is degraded by Si droplet like features as has 

been previously reported due to excess Si on the surface (A.A. Burk & Rowland, 1996; 

Hallin et al., 1997; Hassan et al., 2008), due to incomplete removal of surface Si by 

thermal evaporation (Table 4.2, reaction 5) . On the other hand, TFS addition at this 

condition resulted in an improved surface due to Si removal reaction-14 (Table 4.2). No 

silicon deposition is observed for the etched surfaces using TFS, which was confirmed by 

Raman analysis (Nakashima & Harima, 1997).  

Prior to the discussion of the role of TFS and other precursor gases during 

hydrogen etching, it is essential to discuss the mechanism of hydrogen etching itself 

briefly. As described by Kumagawa et al. (Kumagawa & Yamada, 1969), the hydrogen 

etching mechanism has the following major reaction steps: I) SiC Dissociation, II) silicon 

removal, and III) carbon removal reactions. The major reactions associated with 

hydrogen etching and their Gibbs free formation energies (ΔG) are shown in Table 4.2 

for 1800K, 1900K and 2000K, at atmospheric pressure, based on reactions found in 

(Kumagawa & Yamada, 1969). Considering the Gibbs free energies of formation, the 

dissociation of SiC and consequent liquid Si formation as per reactions (1) and (2) in 

Table 4.2, is expected on the surface. The other reactions, 6- 8 in Table 4.2, have 

higher free formation energy, and hence are less favorable.  
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In the case of H2, it has the possibility to react with thermally dissociated Si or C 

on the surface. Carbon removal by hydrogen is more favorable since the free formation 

energy of C removal reactions by hydrogen (10-11, Table 4.2) are lower than the free 

formation energies of Si removal reactions by either thermal evaporation or hydrogen 

reactions (5-8, Table 4.2). Carbon removal by H2 is possible by both reactions (10) and 

(11) in Table 4.2 at 1900K considering similar Gibbs free energies for the two reactions 

at this temperature. However, reaction (10) is more favorable at lower temperatures and 

(11) is more favorable at higher temperatures. Hence, when H2 is introduced, the removal 

of C (difficult by only thermal dissociation, forming solid C without H2) increases, 

leaving behind excess liquid Si (A.A. Burk & Rowland, 1996; Hallin et al., 1997), 

formed by reaction (2) on the surface. Even though H2 initiates C removal from the 

surface, the overall SiC etching is still limited by the slower Si removal rate by (5-8, 

Table 4.2) since H2 cannot react with the carbon efficiently until liquid Si is removed 

from the surface, as the excess Si on the surface drives the dissociation reaction (2) 

backward, slowing the etch rate down. Thus, the removal of Si is the limiting factor in the 

etch rate of SiC in a pure hydrogen ambient, supported by experiment and Gibbs free 

energy considerations. This excess Si on the surface can be removed efficiently by HCl 

addition (Nakamura et al., 2000) which increases the etch rate by increased Si removal 

rate (16, Table 4.2). In another method, by the hydrocarbon addition (e.g. C3H8), the 

hydrogen-carbon reaction is suppressed at the surface, driving the H2 etching (10-11, 

Table 4.2) backward due to C overpressure. By this hydrocarbon addition it is ensured 

that C is not removed from the surface at a faster rate than Si, which removes the 

bottleneck for SiC etching due to reactions (1, 2, 10 and 11) and prevents the formation 
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of excess Si on the surface, and consequently lowers the SiC etch rate (A.A. Burk & 

Rowland, 1996).  

Based on the hydrogen etching mechanism discussed above, the etching 

mechanism of TFS and other precursors in hydrogen ambient is described in the 

following. The mechanism of TFS mediated hydrogen etching is considerably different 

than that mediated by a chlorinated silicon precursor such as dichlorosilane due to the 

inertness of TFS. TFS is one the most stable gas molecules (Yershov et al., 1993) due to 

its strong Si-F bond, which is the strongest Si-halogen bond among available silicon 

precursors with the highest dissociation bonding energy (Table 4.1) (Gutmann, 1967; 

Huheey, 1972). The higher dissociation bonding energy of a gas molecule requires a 

higher temperature for thermal decomposition. In the case of a chlorinated silane with a 

weaker Si-Cl bond, hydrogen reacts and decomposes chlorosilanes starting at 1000°C for 

tetrachlorosilane (SiCl4) or even lower temperatures for silicon chlorohydrides (SiHCl3, 

SiH2Cl2). The participating species for etching reactions are free Si radicals, H2 and HCl 

at the typical SiC growth condition (~1600°C)  (A Veneroni & Masi, 2006), leading to 

several reaction pathways, complicating the process.  

On the other hand, TFS, with the strongest Si-F bond, is decomposed by H2 at 

much higher temperatures, starting above 2000°C (Collins, 2000). There is only one 

participating etch species at typical temperatures, TFS itself, greatly simplifying the etch 

mechanism. This simplicity is also responsible for suppressing other parasitic reactions 

present for chlorosilanes, which lead to parasitic deposition during the growth of SiC 

(Rana, Chandrashekhar, et al., 2012). The unfavorable TFS decomposition is also 

apparent from reaction (13) in Table 4.2, where the free formation energy for complete 
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decomposition of TFS is very large. On the other hand the Gibbs free energy of formation 

of the decomposition reaction of DCS to form elemental Si is significantly lower (15, 

Table 4.2) indicating much easier thermal decomposition of DCS and consequent 

formation of free elemental Si.   

TFS reacts with silicon according to the following reaction above 1150°C and forms 

gaseous SiF2  (Timms et al., 1965). According to reactions (1) and (2) in Table 4.2, it is 

very favorable for Si to be liquid on the surface at typical conditions (1600°C) due to the 

decomposition of SiC to its constituent elements. Hence the most likely etching reaction 

using TFS (SiF4) is  

SiF4 (g) + Si (l) → 2SiF2 (g)                       (Table 2 reaction 13) 

as found experimentally using Si (Timms et al., 1965). The process of Si removal from 

the SiC surface by TFS is illustrated in Figure 4.4. During etching, each TFS molecule 

reacts with elemental Si formed by decomposition of SiC, thereby forming gaseous SiF2 

(14, Table 4.2) while hydrogen removes C (10, 11, Table 4.2). By this reaction, the Si 

removal is not the limiting step anymore for SiC etching since the free formation energy 

of reaction of Si removal by TFS (ΔG = 15.93 kcal/mol; T=1900K) is much lower than a) 

the free energy of the Si evaporation reaction (ΔG = 42.59 kcal/mol; T=1900K) and b) 

the C-removal reactions as shown in Table 4.2 (reactions 5,10,11,14). This mechanism of 

SiC etching using TFS in a H2 ambient is illustrated in Figure 4.4. 

The free formation energy of Si removal reaction by TFS by forming gaseous 

SiF2 is 15.93 kcal/mol at 1900K (14, Table 4.2) is also considerably lower than that of C 

removal by H2 by reacting with C and forming gaseous C2H2 with a free formation 

energy of 29.26 kcal/mol (11, Table 4.2).  At this condition, according to (10, 11) and 
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(14) in Table 4.2, the Si removal rate by TFS is higher than the C removal rate by H2 

reaction-11 (Table 4.2). This enhanced Si removal using TFS prevents the formation of 

excess Si on the surface, and consequent Si droplet formation, further increasing the SiC 

etch rate which was previously limited by the slower Si removal rate in pure hydrogen 

ambient.  

 

  

Figure 4.4 Mechanism of SiC etching using TFS and H2. I. Si and C of SiC dissociate and 

form Si (l) on the surface according to reactions 1 and 2 in Table 4.2, II. Si on the surface 

is removed by TFS (reaction 14, Table 4.2). In the absence of TFS, the removal of silicon 

would be by thermal evaporation (reaction 5, Table 4.2), which is much less favorable, 

and III.  Hydrogen reacts and removes C by forming either CH4 or C3H8 gases (reactions 

10 and 11, Table 4.2). 

 

In this process, it may be thought that the surface should have excess carbon due 

to higher removal rate of Si. However, in practice, the hydrogen partial pressure 

significantly outweighs the TFS partial pressure, allowing unrestricted removal of the 

dissociated carbon (1, Table 4.2) leading to complete SiC etching, and removing the Si-

removal bottleneck in reactions (5-8) in Table 4.2 . It is noteworthy that removal of C by 

TFS is unfavorable due to the much higher free formation energy found for carbon 
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reactions with TFS (Table4.2, reaction 17-21),  which supports the reaction pathways 

proposed here. 

To compare a chlorosilane for its influence on hydrogen etching, DCS is used in 

the reactor with the same flow rates and other conditions, as each DCS molecule has one 

Si atom, just like TFS. Contrary to the TFS chemistry, DCS decomposes thermally to 

elemental silicon much easier due to a low free formation energy of reaction (15) in 

Table 4.2. During this decomposition, HCl may be produced by reaction (15) and would 

be expected to increase the Si etching since the free formation energy of Si removal by 

(16) is exothermic and highly favorable. However, experimentally, we found that in fact 

DCS suppresses SiC etching in H2 as shown in Figure 4.4. The above anomaly is 

explained as follows. 

By reaction 15 in Table 4.2, any HCl partial pressure increase is caused by an 

increase in the partial pressure of elemental Si due to dissociation of Cl from DCS. This 

increase of the partial pressure of Si free radicals counteracts the potential effects of HCl 

etching of SiC by depositing Si(l) on the surface which eventually drives the reaction-5 

(Table 4.2 and Figure 4.3) backwards and restricts overall SiC etch by H2 and HCl 

[reaction 11 and 16 (Table 4.2)]. When the Si deposition rate (due to Si pyrolysis) is 

higher than the etching rate by H2 and HCl, the net etching is lost (Figure 4.3). Severe 

liquid silicon deposition is observed at higher hydrogen flow rates (Fig 2) indicating an 

increased Si pyrolysis reaction rate at higher H2 flow rates. These depositions are visible 

as large liquid silicon droplets on the surface after the experiment (Figure4.4).  

Finally, hydrogen etching was performed with propane addition, as has been 

investigated by others (A.A. Burk & Rowland, 1996; Hassan et al., 2008; VanMil et al., 
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2009). For the case of propane addition, the etch rate of SiC is also reduced (Figure4.4). 

However it was found that for similar atomic concentrations of C compared to Si 

concentration in the DCS experiments, the effect of propane on etching suppression is 

less severe, as there was no Si-deposition. The reduction of the etch rate is attributed to 

the addition of hydrocarbon species in the vapor, which drives reaction 11 in Table 4.2 

backwards, suppressing the etch rate. 

5.3.2 TFS ETCHING WITH VARIOUS OFF-CUTS 

Similar to SiC growth by step-controlled epitaxy (Matsunami et al., 1997), 

etching of the SiC surface also occurs at the kink sites (Nakajima, Yokoya, Furukawa, & 

Yonezu, 2005). The density of kinks is higher for higher off-cut substrates. Although the 

differences are not large, a trend of higher etch rates were observed for higher offcut 

substrates (Figure 4.5). The higher etch rates for higher off-cuts are associated with the 

higher number of kinks for higher off-cut substrates since the etching occurs at the steps 

or kinks (Nakajima et al., 2005). A surface study using AFM is presented in Figure 4.5. 

Step bunching of the etched surfaces was observed for different etch conditions for 4° 

and ~0° off cut surfaces. Both etch rate and off cut dependences were observed for step 

bunching and are discussed below.  

The fundamental reason for step bunching is the fact that the atoms landing on the 

surface (for growth or etching) have different probabilities of migration to, and reaction 

at, the kinks and steps, respectively (Schwoebel, 1966). As a result, the step flow rates 

(growth or etch) are different for the step and kink directions. The faster step flow 

direction catches up with the slower one,  
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Figure 4.5 Etch rates as a function of TFS concentration in H2 gas for various off cut SiC 

substrates. A trend of slightly higher etch rates were observed for higher off cut 

substrates. 

leading to step bunching. Whether the steps will coalesce and form bunched steps 

depends not only on the different probability of the adatoms to migrate to the kinks but 

also on the crystallographic structure of the steps (e.g. off cut, polytype, stacking of the 

steps etc.) (Schwoebel, 1966). Step bunching also depends on the growth condition; e.g. 

temperature, pressure and duration. Once step bunching has been initiated, it increases 

over time (Sato & Uwaha, 2001). This is because, for longer time, the steps move longer 

distances and more steps coalesce to form macro steps, increasing step bunching. 

Similarly, increased step bunching results for higher etch rates (or growth rate) since at  
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Figure 4.6 AFM surface morphology of SiC surfaces for 0°, 4° and 8° off cut substrates 

etched at various TFS gas concentrations in H2. 

this condition, steps move longer distances for a given time and hence, at higher etch 

rates, more steps coalesce, forming macro steps and increasing step bunching. Very 

rough, wavy surfaces are observed (Figure 4.6) at higher etch rates due to severe step 

bunching. 
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Greater step bunching was also observed for lower off-cut substrates for a given 

condition (Figure 4.6). From Figure 4.5, it can be observed that step bunching takes a 

severe form (roughness ~6.5 nm) at an etch rate of 16µmh
-1

 for on-axis substrates 

whereas this severity of step bunching is not observed for 4° off cut substrates even at 

etch rates of 20µmh
-1

. On the other hand, for 8°offcut substrates, step bunching is not 

observed even at higher etch rates (43µmh
-1

) (Figure 4.6). However, at this high etch rate 

for 8° off cut substrates, hillock structures are observed which are attributed to 

delineation of polishing related surface and sub-surface defects in the as received 

substrate (Figure 4.6) (Sanchez et al.).  

M. Syvajarvi et al showed that step bunching is dependent on the difference 

between the lateral growth rates between     00] (step) and      0] (kink) directions 

(Syvajarvi, Yakimova, & Janzen, 2002). When the substrate is cut towards the       ] 

direction, unintentional miscut is also present creating steps towards the     00] direction. 

For higher off cut substrates, this miscut related step density towards     00] is negligible 

compared to the step density along the [     ] direction due to the primary off-cut angle. 

Hence, for higher off-cut substrates, etching is mainly unidirectional or anisotropic, 

where the etch rates along       ] is much higher than the etch rates along     00] 

directions and the step bunching is minimized. However, for lower off-cut substrates 

(e.g., vicinal on axis), the miscut angle is not negligible towards [   00] and step densities 

towards both     00] and       ] directions are comparable. Hence, with lower off-cut 

substrates, step flow due to etching is more isotropic which results in increased step 

bunching on lower off-cut substrates compared to higher off-cut substrates (Figure 4.6). 
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The trends presented in Figure 4.5 enable the identification of an ideal TFS partial 

pressure as a function of SiC substrate off-cut for optimized SiC surface preparation. This 

optimization is a balance of etch-rate, required to remove enough damage from the 

surface, with minimization of step-bunching, which otherwise degrades the surface prior 

to growth. 

In summary, tetrafluorosilane (TFS) selectively reacts with Si on the SiC surface 

enhancing hydrogen etching by faster Si removal from the surface in the form of SiF2 

gas, relieving the Si-removal bottleneck. TFS is proposed to be an alternative choice for 

etching SiC compared to using HCl. TFS is reported to be a unique Si precursor gas 

which is also a strong SiC etchant in hydrogen environment. Dichlorosilane (DCS), a 

chlorisilane gas having weak Si-Cl bond (compared to the Si-F bond in TFS) decomposes 

easily at typical SiC CVD temperatures and prevents SiC etching due to Si deposition. 

Here, DCS mitigates the hydrogen etching to a higher degree than mitigation of hydrogen 

etching by the use of propane in hydrogen. On the other hand, very high etch rates can be 

obtained using TFS in hydrogen compared to the etch rates using only hydrogen gas. 

Greater step bunching was observed for higher etch rates and for lower off-cut substrates. 

Optimized etch conditions for pre-growth surface preparation can be obtained from the 

off-cut and partial pressure dependences presented in this paper. The elimination of the 

Si-removal bottleneck using TFS represents the development of a much more robust 

surface preparation technique for SiC epitaxy, critical for the continued improvement of 

material quality for high power SiC devices. 

A detailed study of growth rates, doping, off cut dependency etc. using SiF4 gas 

precursor will be provided in Chapter 5. 
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CHAPTER 5  
  

EFFECT OF C/SI RATIOS ON EPILAYERS GROWN ON VARIOUS 

OFF CUT SUBSTRATES USING TETRAFLUOROSILANE GAS  

 
 

5.1 INTRODUCTION 

 

Silicon carbide is the choice for the next generation high power and high temperature 

electronic device applications due to its various extraordinary properties. Properties that 

make SiC a special material for high power and high temperatures devices are its lower 

intrinsic carrier concentration, higher bandgap, higher breakdown electric field, good 

mobility and high thermal conductivity (Neudeck, 2006). From theoretical calculations, 

for ideal material, SiC device should operate at a temperature up to 800°C compared to 

300°C for the case of Si devices. Using SiC, theoretically, thickness of the voltage 

blocking region can be made 10 times thinner than Si and the doping concentration can 

be increased 10 times higher compared to Si (Neudeck, 2006). However, despite the 

enormous promises, SiC’s true power is yet to be unleashed. High power, high 

temperature reliable devices are still not present in the market. One of the major issues 

for which the promise of SiC cannot be met despite high demand is the difficulty to 

achieve high quality SiC materials. SiC material is yet to be matured both for its bulk 

growth and epitaxial film growths. Substrate defect density is still significantly higher 

compared to the silicon technology. When SiC epitaxial films are grown on the 
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substrates, existing defects already present in the substrate mostly propagate to the 

epilayer either in the same form as the original or converted into a different defect (e.g. 

Basal plane dislocation to threading edge dislocation). While, from epitaxial growth 

perspective, nothing much can be done to completely prevent the propagation of defects 

from the substrate, the primary goal of SiC epitaxy is then preventing new crystal or 

morphological defects generated during growth due to process related issues.  

Particle generation during the epitaxial growth is one of the leading issues for low 

yield of the epilayer on the wafer, as discussed in the Chapter 3. Particulate generation in 

SiC CVD is particularly much more severe compared to other semiconductor materials 

due to various reasons. The main reason is that SiC CVD requires much higher 

temperatures, typically ~1600°C or more.  At this temperature condition, gas decomposes 

much earlier in the gas delivery system, rendering severe Si gas phase nucleation and a 

wider zone of region where parasitic deposition takes place and generate particles. 

Another reason for which particulate condition is particularly severe for SiC epitaxy is 

the thick epitaxy requirement for high voltage application. When thick epitaxy is 

required, growth rate must be increased and as well as the growth duration. When higher 

flow rate of gases are used for a prolonged period of time for thick epitaxy, particle 

generation is also proportionately increases and prohibit good growth. In Chapter 3 we 

have shown that using SiF4 as the Si-precursor Si gas phase nucleation can be practically 

eliminated and parasitic deposition can be suppressed significantly. In this chapter we 

present some detailed results regarding the growth using SiF4 gas. Before we further 

proceed presenting our results related to the growth using SiF4 gas, it is essential to 

discuss briefly about the history of using various Si precursor gases in SiC epitaxy.  
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We start our discussion with silane (SiH4), which is the simplest Si gas precursor. 

Despite difficulties in growing SiC epitaxy using silane described in Chapter 2 and 3, 

high growth rates and thick epitaxy are reported by various authors. O. Kordina et al 

demonstrated high growth rate (200um/hr) at high temperature using silane (Kordina et 

al., 1997).  R. Myers et al. used silane for high quality epilayer growth and demonstrated 

65 um thick epi at a growth rate of  32um/hr. X-ray rocking curve FWHM of  ~11 was 

demonstrated and  AFM surface roughness of 0.32nm was reported (R.L. Myers et al., 

2005). High growth rate (50um/hr) with low BPD density (22/cm2) was demonstrated by 

Tsutomu et al (2007) (Hori et al., 2007) using silane. Epilayer with high growth rate as 

much as 250um/hr was reported by Masahiko et al. in 2007 by using silane as a precursor 

gas (Ito et al., 2008) with good uniformity of thickness and doping.  Smooth surface with 

a roughness of 0.2nm was demonstrated for thick epilayers (>200um). Despite reports of 

aforesaid high growth rates using silane, it is not a practical gas for high temperature SiC 

CVD to achieve thick epitaxy due to the fact that such growth requires extreme 

conditions to suppress Si cluster formation (e.g. very high flow rate, 50-100 slm of H2). 

Although growth at such extreme conditions can prevent gas phase nucleation near the 

SiC growth surface, Si parasitic deposition takes place on various reactor parts (e.g. 

hotwall) necessitating their frequent replacement in order to achieve good epitaxial 

growth. The detailed discussion of parasitic deposition and particulate related issues are 

provided in Chapter 3.  

Chlorinated silicon precursor was introduced to suppress Si gas phase nucleation 

associated with the use of silane. Chlorine was first introduced with silane as HCl to 

suppress Si cluster formation and a growth rate of 20- 30 um/hr was demonstrated in 
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2005 by (Crippa et al., 2005; R. L. Myers et al., 2005). Roughness of these samples was 

reported to be ~0.25nm. During almost the same time, carbon and silicon containing 

chloro precursor methyl trichlorosilane (MTS) was used to demonstrate a growth rate up 

to 90um/hr by Peng Lu et al in 2005 (Lu et al., 2005). Later (2006) F La Via et al 

reported a high growth rate of 112um/hr using HCl/TCS with a surface roughness of 

0.3nm (F. La, Galvagno, Foti, et al., 2006), where  density of defects was reported to be 

400-3000/cm
2
, 3E4-7E4/cm

2
, and 2000-6000/cm

2
 of TSD, TED and BPD respectively. In 

2007, H. Pedersen et al. reported a growth rate of 100µm/hr using methyltrichlorosilane 

(MTS) (Pedersen et al., 2007). Roughness of the epilayer was reported to be as good as 

0.57nm. M. A. Fanton (2008) reported very high growth rate (200um/hr) using SiCl4, 

though information about crystal quality was not provided  (M. A. Fanton et al., 2008). 

Trichlorosilane (SiHCl3) was used by F. Fla Via et al for growth in 2008 at a growth rate 

of 100um/hr  (F. La et al., 2008). S. Leone and his group demonstrated a growth rate of 

25um/hr on on-axis 6H and 4H SiC substrates (Leone, H.Pedersen, A.Henry, & 

O.Kordina, 2009). Mixture of methyl chloride (CH3Cl) silicon tetrachloride (SiCl4) was 

used to demonstrate epilayer growth at 100 um/hr by Siva Kotamraju (2009) (Kotamraju 

et al., 2009). Chowdhury et al reported DCS as precursor for high growth rate (2011) 

(Iftekher et al., 2011), demonstrating 100um/hr.  X-ray rocking curve FWHM was 

reported to be 7.8 arcsec. 

Thick epitaxy is utmost important for SiC growth since the main application of 

SiC is expected to be high power devices. One of the reasons for which enormous effort 

was made to achieve high growth rate in recent years by various research groups was to 

reduce the cost by reducing the production time of the long duration growth at low 
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growth rates to achieve thick epitaxy. However, the degradation of growth environment 

of the reactor (e.g. cleanliness, particle formation etc.) and its influence on the crystal 

growth were not addressed or discussed adequately (e.g. particulates on the epi and 

consecutive morphological defects etc.) in the literature. The requirement for achieving 

high growth rate is that precursor flow should also be increased to increase mass transport 

at the growth surface. At this high growth rate condition, high amount of parasitic 

deposition (especially Si parasitic deposition) also takes place in the reactor. The detail of 

these parasitic depositions was presented in ICSCRM 2011 conference by the authors’ 

group (Rana, Song, et al., 2012a, 2012b). These depositions does not only degrade the 

epilayer but also cause frequent replacement of the expensive reactor parts and increase 

the cost of the growth counteracting one of the primary goal of achieving high growth 

rate. 

Despite numerous reports of high growth rates (>100um/hr) - high voltage, 

reliable devices are still a challenge for commercial applications mainly due to 

unavailability of high quality thick epilayers in the current market. It can be found that, 

for commercial production a growth rate of only 20µm/hr is typical (Burk et al., 2012). 

Standard thickness for 3” and 4” epilayers as published in (www.cree.com) is still 50µm 

(Table 5.1) with exorbitant cost indicating the underlying difficulties in achieving thick 

epilayers (>100um). Hence, despite reports of thick epitaxy presented in the existing 

literatures, we believe that the need for finding a new gas chemistry to improve the CVD 

epitaxy has not been diminished yet. 
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Table 5.1 Current commercial specification of 3" and 4" diameter wafers 

  
Epi 

Thickness 

Tolerance 

Epi Doping 

Tolerance 

Epi defects  

(Carrot, 

Particles, TD 

etc) 

n type p-type 

Si 

face 0.2-50um 10% 

9E14-

1E19 

9E14-

1E19 25% 

25/cm2 

C 

Face 0.2-10um 15%-25% 

1E16-

1E19   50% 

 

As a novel gas for SiC epitaxy, it is important to study the growth using SiF4 on 

various off cut substrates. It is well known that the surface morphology improves for 

higher off cut substrates. Ideally the growth should take place at the kinks to preserve the 

polytype. Longer terrace width for lower off cut substrates is not preferable since longer 

terrace width of a substrate also indicates lower kink density, which will reduce the 

density of nucleation sites rendering lower growth rates. Also the probability of 3C 

formation on the terrace is higher. The details of off cut and its effect on growth rate and 

crystal quality were discussed in detail in Chapter 1. In recent days more attention has 

been paid to improve the epitaxy on lower off cut substrates especially on 4° off cut or 

even lower tending to on-axis substrates. The advantage of using lower off cut substrates 

is that they inherently suppresses BPD propagation as well as reduce the material wastage 

unlike associated with higher off cut substrates. The suppression of BPD propagation and 

material wastage using lower off cut substrates were discussed in detail in Chapter 1.  
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Effect of C/Si ratio on doping and surface morphology was studied by various 

groups for silane gas (W. Chen & Capano, 2005; Fujiwaraa, Dannoa, Kimotoa, Tojob, & 

Matsunami, 2005; Larkin et al., 1994). In the previous chapter we discussed the first 

homoepitaxial growth of SiC using novel tetrafluorosilane (SiF4) gas. To utilize the 

growth using SiF4 it is needed to study the growth in further details for C/Si ratio versus 

doping, growth rates, surface morphology and crystal quality. Here in this chapter we will 

provide the detailed experimental results of the epitaxial growths using tetrafluorosilane 

to discuss relation of C/Si ratios versus doping, dependence of growth rates on C/Si ratio 

and the surface morphology of epilayers grown on various off cut substrates. 

The growths described in this chapter were conducted in a vertical hotwall CVD 

described in previous chapters. Tetrafluorosilane gas was used as a Si precursor whereas 

propane is used as the C precursor. SiF4 flow rate was kept fixed at 10 sccm and the C/Si 

ratio was varied by changing the propane flow rate. Hydrogen gas was used as the carrier 

gas and the H2 flow rate was fixed at 12 slm for all the growths. Growth pressure was 

fixed at 150 Torr and the temperature was fixed at 1600°C. Veeco Nanoscope III atomic 

force microscope is used for the AFM images. Mercury probe CV analyzer was used to 

measure the net doping concentration of the samples. Fourier transform infrared 

spectroscopy (FTIR) was used to measure the thickness of the epilayers. 

 

 

5.2 RESULTS AND DISCUSSION 

5.2.1 C/Si VERSUS DOPING 

For the growth of compound semiconductor materials, when two or more precursor 

gases are used (e.g. C source and Si source gases for SiC epitaxy), the ratio of these gases 
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are extremely important since it defines the doping concentration and also influences 

surface morphology of the epilayers (e.g. step bunching, growth pits, carrot, triangular 

defects etc.). Effect of C/Si ratio on the doping concentration is described in (Larkin et 

al., 1994). It is well known that for the SiC growth, the n-type dopant (N) occupies C 

sites and the p-type dopant (B) occupies the Si sites. When there is a higher amount of Si 

present than C, there will be relatively more vacancy of the C sites present during the 

crystal growth. As a result, at lower C/Si ratios, with greater C vacancy sites, nitrogen has 

more probability of being incorporated in the crystal rendering higher n-type doping. On 

the other hand, at higher C/Si ratios or Si deficient condition, more Si sites will be 

available for p-type dopants to be incorporated in the crystal and more p-type doping is 

expected. Higher n-type doping was observed for lower C/Si ratios and higher p-type 

doping was observed for higher C/Si ratios as per the well-known site competition rule 

(Larkin et al., 1994) (Figure 5.1). Polarity crossing was observed at a C/Si ratio of around 

~0.9. C/Si ratio of 0.8- 1.0 was found to be in the low doped region (this range is more 

apparent from Figure 5.2). 

One of the most interesting aspects of using SiF4 gas for the growth was its C/Si 

versus doping relation. The doping concentration of epilayers grown using SiF4 is 

comparatively more insensitive to the variation of C/Si ratios compared to conventional 

Si precursors. A comparison is provided for the doping concentration versus C/Si ratio 

graph for DCS and SiF4 mediated growths in Figure 5.2. 
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Figure 5.1a) C/Si ratio versus doping graph for various off cut substrates using SiF4 and 

C3H8 as precursor gases; b) Doping concentration versus C/Si ratio for various off cut 

substrates using silane. 

No obvious off cut dependency was observed for the doping at various C/Si ratios in 

our experiments. This is in contradiction to previously reported results using silane gas 

(W. Chen & Capano, 2005; Forsberg et al., 2002; Yamamoto, Kimito, & Matsunami, 

1998). This off cut independent doping found for TFS will be explained later. 

 

Figure 5.2 Comparison of C/Si ratio vs. doping for SiF4 and DCS showing the doping 

change is less affected for SiF4 compared to DCS (8° off cut). 
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Table 5.2 : Metric for doping ΔN = ND – (-NA) = ND + NA of epilayer using various 

gases. 

Gas Range of C/Si ratio ΔN = ND + NA  Reference 

Silane 0.8 - 1.25 5 x 1016 (R.L. Myers et al., 2005) 

DCS 0.8 - 1.25 6 x 1015 (Iftekher et al., 2011)  

DCS 0.8 - 1.25 2 x 1016  Reported in this dissertation 

TFS 0.8 - 1.25 2 x 1015 Reported in this dissertation 

 

A significantly higher variation of doping (2x10
16

 n to 5x10
15

 p) was observed for 

C/Si ratio ranging ~0.8 to 1.4 for DCS. Similar sharp change of doping is also found for 

the growth using silane reported in (R.L. Myers et al., 2005) and using DCS reported in 

(Iftekher et al., 2011). On the other hand, variation of doping concentration due to the 

change of C/Si ratios are much flatter for SiF4 compared to the curve found using DCS 

(Figure 5.2). Figure 5.2 indicates SiF4 has a much larger window of C/Si ratios to achieve 

lower doped samples. Here we propose a metric for the C/Si variation versus doping 

concentrations found for different Si gas precursors Table 5.2, which might be useful to 

know the C/Si ratio sensitivity of doping concentration using various gases. For the 

similar C/Si ratios for various silicon precursors it can be found from Table 5.2 that SiF4 

has the lesser variation of doping changes. 

 The donor and acceptor impurities in Si epitaxy are also commonly used as donor 

and acceptor impurity atoms in SiC. Calculations performed by Chadi (Emtsev et al., 

2009) demonstrated that substitutional F, Cl and Br behave like shallow single donors in 

Si crystal. On the other hand, due to their strong electro-negativity, these VII elements 

can also behave like acceptors when they are tetrahedral interstitials. However, only F 
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can be stable in interstitials due to their smaller size (Emtsev et al., 2009) and hence F 

will have more tendency to behave like an acceptor unlike Cl. It was reported that Cl 

implantation turns p-type Si into n-type semiconductor(Daas et al., 2012) proving Cl to 

be a n-dopant in Si(Emtsev et al., 2009). Experimentally, Cl found to be a more efficient 

n-type dopant than the F(J. A. Robinson et al., 2009). 

 Substitutional Cl (ClSi or ClC) was also reported be like a n-type dopant in SiC 

crystal (Oshima & Nagashima, 1997) as reported for Si (Emtsev et al., 2009). F 

incorporation in SiC has not been investigated yet. However, for SiC, the atomic 

arrangement is more closely packed (HCP) than cubic Si and hence Cl or F incorporation 

can be assumed to be considerably less for SiC. A detailed SIMS analysis is required to 

quantitatively analysis to investigate F incorporation (if any) in the epilayers grown using 

SiF4. 

The most expected application of SiC is high power devices, where high voltage 

(>10kV) is needed to be blocked at reverse bias. Breakdown voltage is related to critical 

electric field (or breakdown electric field) and doping concentration by the following 

formula. 

    
       

  

   
                                          (5.1) 

From the above equation it can be found that while    (relative permittivity),       ,     

(barrier potential) and q are fixed, higher breakdown voltage can be achieved only by 

reducing the doping concentration. Hence, for high voltage applications (i.e. the primary 

goal of SiC), low doped sample is essential and hence convenience of growing low doped 

epitaxy using SiF4 due to the larger window (Figure 5.2), is an advantage to meet the 

primary objective of SiC material.  
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Figure 5.3 C/Si ratio distribution in the reactor (2D analysis) and distance versus C/Si 

ratio plot of the susceptor surface. 

For the commercial production it is essential to grow multiple large diameter wafers 

in a single run to reduce manufacturing cost while maintaining doping uniformity. 

Current substrate technology is tending to 6” in diameter. While for silicon epitaxy main 

parameter to control the doping uniformity is the N2 flow rates (flux uniformity over the 

substrate), on the other hand, during the silicon carbide epitaxial growth, both N2 flux 

uniformity and the uniformity of C/Si on the surface area have to be precisely controlled. 

It was found using the virtual reactor simulation described in Chapter-2 that C/Si ratio 

varies over the surface of substrates depending on gas flow dynamics, temperature, 

pressure etc as shown in Fig. 5.3. While it is much easier to get doping uniformity on a 

smaller sample (usually 8mm x 8mm) placing it at the center of the susceptor where the 

flux concentration does not change very much, it is extremely difficult to maintain the 

same C/Si ratio for large diameter substrates. In modern SiC CVD system, it is needed to 
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grow multiple (6 or more) 150mm diameter substrates (Burk et al., 2012) where the 

geometry of the reactor and the gas flow dynamics are much more complex. Presumably, 

maintaining the uniformity of C/Si ratio and the doping will be much more difficult in 

those complex large diameter multi substrate systems. In Figure 5.2, there is a sharp 

change of doping from as C/Si ratio changes from 1.05 to ~1 in epitaxial growth using 

DCS. For this change of C/Si ratio of only 0.05 (from 1.05 to 1), the doping changes from 

~5 x 10
14

 to 5x10
15

 cm
-3 

(shown by a green line- A in Figure 5.2). As an example, to 

achieve a doping of 1x10
15

 which is very typical for SiC epitaxy for high voltage 

applications, the C/Si ratio has to be very precisely controlled at 1.03 with a very high 

tolerance. This is extremely difficult due to non-idealities and run to run variations for 

flow rates, pressure, temperature etc. However, in epitaxial growth using TFS, since 

doping concentration is much insensitive to the variation of the C/Si ratio for a large 

range (e.g., the doping concentration will remain near to 1.0x10
15 

cm
-3

 (n-type) in the 

C/Si ratio range of 0.3 to 0.7 as shown in blue line in Figure 5.2), there will not be 

significant change of doping for the growth using SiF4 compared to that of using DCS. 

From preliminary results, doping concentration was found varied considerably using 

DCS when samples were placed at the center and at the edge on the large diameter 

(55cm) susceptor because of the large variation of C/Si ratio over the substrate surface as 

shown in Fig. 5.3 and the high sensitivity of doping concentration versus C/Si ratio in 

epigrowth using DCS. On the contrary, when SiF4 was used, variation of doping 

concentration was found to be considerably smaller compared to than that of DCS 

because in epigrowth using TFS, the doping concentration is much insensitive to the 

variation of the C/Si ratio. Larger variation was also observed for the growths using 
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silane. Hence we state that using SiF4 significant improvement on doping uniformity over 

large diameter, multiple substrates can be achieved over silane and dichlorosilane gases 

even under the non-ideal condition leading to slight variation of C/Si ratios. We believe 

this will be very useful for commercial production with doping uniformity over the large 

substrates. A detailed study is necessary to investigate further to understand this behavior 

of doping concentration found using SiF4.  

5.2.2 C/SI VERSUS GROWTH RATES 

Growth rate of SiC is strongly related to the C/Si ratios during the growth. When one 

element of SiC is abundant, the growth will be controlled by the amount of another and 

vice versa. When SiF4 flow rate was fixed and C flow rate was increased, growth rate 

increases almost linearly up to a C/Si ratio of 1.6 as shown in Fig. 5.4. Growth rate 

saturates above a C/Si ratio of 1.6 and does not increase further and the C rich condition 

is reached. Similar behavior was also reported previously (W. Chen & Capano, 2005) for 

the growth using silane. Using halogenated gases, Si loss due to gas phase nucleation is 

suppressed (unlike silane) and the growth rate becomes C-supply dependent even at a 

higher flow rate of Si precursor. For the case of silane, higher flow rates of silane 

precursor will result in supersaturation and Si gas phase nucleation and growth rate 

cannot be increased further by the increase of C-precursor flow rate due to Si deficiency. 

Ideally, in C-supply dependent growth, the growth rate is increased as C-precursor flow 

rate is increased as the Si-source can be kept ‘adequate’ due to the suppression of Si-

supersaturation.  For growth in the C/Si range of 0.2~1.6, the growth rate was observed to 

be C-supply dependent (Figure 5.4) for TFS similar to a previous report using DCS
27

. 

However in SiC growth using silane, the growth rate becomes Si limited for C/Si > 
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0.4(Kimoto, Tamura, Chen, Fujihira, & Matsunami, 2001), > 0.7(R.L. Myers et al., 

2005), or >1(W. Chen & Capano, 2005).  

Off cut dependency on growth rates are discussed in details by (Matsunami & 

Kimoto, 1997). It is well known that, for homoepitaxy, the growth has to take place at 

kinks (discussed in details in Chapter-1). A higher off cut will render a higher growth rate 

due to higher density of kinks or nucleation sites. In our experimental results shown in 

Fig. 5.4, off cut independent growth rate was found.  

Off cut independent growth rates and doping found using TFS needs further 

detailed study in future to explain. However, we speculate the following to explain the off 

cut independent growth and doping presented in this chapter.  

As per the step controlled epitaxy (Matsunami & Kimoto, 1997), the growth rate 

can be found using following formula 

            
    

    
   

   

  
       

  

   
           (5.2) 

Where vstep = step flow velocity 

      
 

  
  , Where h = step height and λ0 = terrace length 

ns = adatom concentration on surface  

λs = average length for adsorbed species to migrate on a ‘step free’ surface before 

desorption. 

τs = mean resident time of adsorbed species. 

According to this formula, if step velocity at the kink is same for different off cuts, 

growth on 8° off cut should be double than that of 4° off cut substrates. However, 

comparable growth rates for different off cuts were found for the epilayers using TFS. 

This weak off cut dependency of growth rates can be explained only if step velocity 
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(vstep) is higher for lower off cut substrates. However, as equation (5.2) suggests, for 

epitaxial growth governed by the surface diffusion of adatoms along the terrace, vstep will 

always be dependent on the terrace width, and hence the offcut angle.  A derivative of the 

growth rate, R with respect to the terrace width shows that the dependence vanishes only 

if λo >> λs, which refers to a desorption-limited growth regime. Hence, we can deduce 

 

1. For the TFS, the step velocity is not determined by the rate of surface diffusion, 

which has to be the same for all off cut angles. Rather, the growth takes place in a 

desorption-limited regime for all off cut angles, where the surface diffusion length 

of the adatoms are very small and only the adatoms formed near the step edge will 

participate in reaction. The higher level of desorption for TFS-based growth can 

be explained by the higher strength of Si-F bond compared to the other Si-X 

bonds (e.g., for DCS-based growth) or Si-H bond (for silane).  

2. Because of the absence of lateral diffusion, the growth at the step edge (or kinks) 

proceeds at a near-equilibrium rate, which varies with the concentration of the 

available reactant species. Since the density of step kinks for a higher off cut 

surface is more than that for a lower off cut surface, for the same adatom flux, the 

concentration of the reactant species at the step edges will be more for lower off 

cut growth surface. The step velocity will then reflect this variation of reaction 

rate, and will be higher for lower off cut surface, compensating for the tanθ term 

in equation (5.2). As a result, the overall growth rate will be independent of off 

cut angle.     
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3. The weak dependence of the doping levels on the off cut angles can also be 

explained by invoking the equilibrium reaction argument, where growth rate 

determines the doping concentration of the epilayer.  

 

 For the case of ~0° off cut (~0.5º miscut) substrates in Figure 5.4, homoepitaxial 

growth only took place at a C/Si ratio of 0.3 for the C/Si ratios used in the experiment. 

Growths found above C/Si ratios of 0.3  were mostly 3C type growth confirmed by 

Raman Spectroscopy (Harima, Nakashima, & Uemura, 1995; Nakashima & Harima, 

1997) and discussed in the next section. 

 
Figure 5.4 C/Si versus growth rate for various off cut substrates (3C growth is found 

above a C/Si ratio of 0.3 for on-axis substrates. 

 

5.2.3 RAMAN ANALYSIS FOR POLYTYPE UNIFORMITY 

The ratio of the 4H peak (E2, transverse optic or TO mode at 776 cm-1) and 3C 

peak (E1, transverse optic or TO mode at 796cm-1) provides indication of the polytypes 

present in the silicon carbide crystal (Harima et al., 1995; Iftekher et al., 2011; Rana, 

SiF4 = fixed at 10 sccm 

3C growth  

(for on-axis) 
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Chandrashekhar, et al., 2012). If the 4H/3C peak ratio is higher, then it indicates lower 

formation of 3C which is desired for 4H-SiC epitaxial growth. No clear indication of 

influence of C/Si ratios on polytype uniformity (4H/3C) was found (will be presented 

later) for 8° and 4° off cuts.  On, the other hand, for ~0° off cut substrate, step flow 

growth was only observed at a C/Si ratio of 0.3.  

It is expected that 3C growth should be higher for lower off cut substrates since 

longer terrace in lower off cut substrates has the greater possibility to nucleate 3C during 

growth. In the SiC crystal, (0001) plane on the terrace is equivalent to (111) plane of 

cubic structure (Konstantinov et al., 1997) and hence terrace has higher probability of 3C 

formation during growth. However, contrarily, it was found from the Raman analysis that 

on average, 3C inclusion was higher for 8° off cut substrates compared to that of found 

for 4° off cut substrates (Figure 5.6). The maximum 4H/3C peak ratio was found for 8° 

substrate was 76 whereas the maximum ratio for 4° off cut substrates were higher (97) 

indicating improved homoepitaxy for lower off cut substrates. It was found that, 3C 

inclusion is lower even for epigrowth on ~0° off cut substrate compared to that of 8°- 

only when the growth was step flow mediated (Figure 5.7). We will try to explain this 

behavior in the following briefly. 

In Chapter 4 we have shown that SiF4 is a strong etchant of SiC substrate whereas 

propane mitigates the etching. A higher etching condition will result in increased etching 

and suppression of 3C nucleation on the longer terraces of lower off cut substrates. 

However, the reason for improved polytype uniformity (lower 3C) for the epilayers 

grown on 4° off cut substrates still cannot be explained by considering only the increased 

etching effect using TFS. If etching effect is taken account, then 3C on the terrace of both 
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4° and 8° growths should be suppressed and the polytype uniformity during growth 

should be comparable for both off cuts. 

This higher polytype uniformity for the epilayers grown on lower off cut 

substrates (when step flow is present) is still need to be further studied for explanation. 

Here we speculate two possible reasons. In Chapter 1 we discussed how higher amount of 

BPDs intersect the surface for higher off cut substrate. Higher density of BPD intersects 

the substrate surface for 8° off cut compared to lower off cut substrates. Defects are the 

disorder in the crystal where polytype stacking sequence will be distorted. When the 

stacking sequences at the kinks are distorted, the polytype template present at the kinks 

for polytype replication for homoepitaxial growth is hampered (see Chapter 1 for the 

concept of polytype template). For a substrate with higher density of disorders (defects), 

more stacking disruption (see Chapter 1 for the concept of template mediated or step 

controlled growth). At these defects sites (with stacking disruption), when ad-atoms 

arrives, what polytype it may form is a question. 3C growth is more favorable to grow 

(energetically; growth takes place at lower temperatures, lower activation energy). When 

no good template is present (disrupted polytype stack sequence due to the defects), 3C 

formation may be more favorable, nucleating from the distorted stacking at the defect 

points.   

In another speculation, we propose that due to the increased density of  kinks for 

higher off cut substrates, when steps will flow (from the kinks), for 8° off cut, the step 

higher off cut substrates will have higher number of kinks present which will also have 

more 3C stackings for replication. Hence we propose that when step flow is ensured 

(with terrace nucleation is prevented) then polytype uniformity will be improved for 
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lower off cut substrates due to lower higher number of 3C presents due to higher number 

of kinks.  

 

Figure 5.5 Increased 3C at the steps is shown due to the higher off cut substrates (a) 

compared to the lower off cut substrates (b) and considered to be the reason for lower 

4H/3C for higher off cut substrates. 

 

Though, ideally, no steps should be present for °0 off cut substrates, the off cut is 

not perfect (0.5° - 1°) in practice and steps are present on the surface. For the case of ~0 

degree off cut substrates, a high 4H/3C ratio of 97 was observed only when step flow 

growth (2D) took place at only a low C/Si ratio of 0.3. At higher C/Si ratios, the step flow 

growth is lost and the growth was dominant by 3C growth (Figure 5.6 and Figure 5.7). 

Obviously, since the terrace width for vicinal on axis substrates much longer (~hundreds 

of nanometers) compared to 4° and 8° off cuts, 3C has much higher probability to 

nucleate on on-axis substrates. Due to this longer terrace condition, step flow will also 

take longer time to cross the terrace. At this condition where growth (3C) starts taking 

place on the terrace in higher amount due longer terrace length, the etch rate during the 

growth also has to be higher compared to higher 8° and 4° off cut substrates to keep the 

terrace free from 3C growth. This higher etching condition is only present at C/Si ratio of 

0.3 or below in our case. However, as propane flow is increased, the etch rate is reduced 

(propane mitigates etching as discussed in Chapter 4). Further, the growth rate is also 

increased at a higher C/Si ratio due to increased availability of C species. So, as a 

3C stacking at kink 3C stacking at kink 
Step flow encounters  

more 3C stacking 
Step flow encounters 

less 3C stacking 
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consequence,  terrace nucleated 3C growth increases rapidly even for an increase of C/Si 

ratio of 0.3 to 0.6 due to the combined effect of reduced etching and increased 3C growth 

rate; as a result 4H/3C ratio (found from the Raman spectrum) is reduced dramatically 

from 97 to 0.5 (Figure 5.6 and Figure 5.7). 

Finally, the effect of surface preparation has also to be considered to explain 

polytype uniformities related to different off cut substrates. It is to be noted that surface 

preparation prior to the growth (mainly by H2 etching) determines the epilayer quality 

and greatly depends on the off cut of the substrates.  
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Figure 5.6 Raman analysis of various epilayers with different off cuts at different C/Si ratios 

1
3
4
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Figure 5.7 Bar graph showing the 4H/3C peak ratios found at various C/Si ratios for 

various off cut substrates. 4H/3C of the substrates (for all of cuts) are shown by dashed 

line. 

 

In a Raman spectrum for SiC crystals, sharper and increased height of longitudinal 

optical phonon-plasmon coupled (LOPC) mode peak at ~964 cm
-1

 is the indication of 

lower doping concentration (Harima et al., 1995; Rana, Chandrashekhar, et al., 2012). 

From Figure 5.6, it can be found that for any off cut, LOPC mode peak became sharper 

and taller at higher C/Si ratios. LOPC peak denotes total impurity incorporation (ND + 

NA) rather than the net doping of the material (ND – NA). From Figure

 
5.6, observing the 

LOPC peaks, it can be seen that at higher C/Si ratio, though the epilayers became higher 

p-type (Figure 5.1) but the total impurity concentration (ND + NA) is decreased. Since 

nitrogen is more abundant (residual from atmosphere) compared to the p-type dopants (B 

or Al), we infer that the variation (increment or decrement) of nitrogen doping 
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concentration for various C/Si ratios is more significant than the variation of p-type 

dopant (B / Al). Hence, we postulate that as C/Si is increased, the (NA-ND) or net p-type 

doping concentration increases but (NA+ND) or overall impurity decreases. A detailed 

SIMS study is required to confirm the Raman data analysis for dopant shown in Figure 

5.6.  

 

5.3 C/Si VS. SURFACE MORPHOLOGY 

5.3.1  (8°) OFF CUT 

 

No correlation with C/Si ratio was observed (by AFM) for the surface 

morphologies of epilayer growths on 8° off cut substrates (Figure 5.8). Usually, step 

bunching is not occurred in epigrowth on 8° off cut substrates. However, surface 

morphology was found to be strongly influenced by the C/Si ratio for the lower off cut 

(4° and ~0° off cut substrates) as discussed in the next section.  

 

 
Figure 5.8 AFM study of epilayers grown on 8° off cut substrates at various C/Si ratios 

showing no strong correlation. Roughness (r.m.s) is shown in nm. 

 

nm nm nm 
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5.3.2.  (4°) OFF CUT 

Unlike the 8° off cut substrates, 4° showed some interesting morphological 

features in the AFM images with varying C/Si ratio. Before we proceed further, we 

discuss the concept of macro and micro steps (Figure 5.9).  

 

Figure 5.9 Graphical illustration of macro and micro steps. 

 

Micro steps are essentially related to the steps created due to the off cut of the 

wafers. The height of these micro steps is ~1nm for 4H SiC which is the height of the 

4H-SiC unit cell (see Chapter 1 for details for off cuts and related step geometry). On the 

other hand, macrosteps are generated due to step flows with different speeds, where steps 

coalesce or merge to each other rendering a larger step with a height of multiple 

microsteps in the range of ~5nm or above, which is called step bunching.  Micro and 

macro steps are illustrated graphically in Figure 5.9. Macro steps are strongly related to 

growth conditions (e.g. C/Si ratio). 

Figure 5.10 shows the AFM study of the epilayer surfaces found for different C/Si 

ratios. 1D analysis of the micro and macro steps of the epilayer formed at various C/Si 

ratios are presented in Figure 5.11. It can be seen in Figure 5.11 that both step height 

(amplitude) and step density (per unit length) of microsteps and macrosteps vary as a 

Distance (x) 
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function of C/Si ratios. It is observed that as the C/Si ratio is increased from 0.3 to 0.9, 

the macro step density reduces (Figure 5.10, Figure 5.11 and Table 2).  The amplitude of 

these macrosteps is maximum (10nm) at the C/Si ratio of 0.9 (Figure 5.10 and 5.11). 

When C/Si ratio is increased further from 0.9 to 1.6, macrostep height is reduced 

gradually (Table 5.2). At a C/Si ratio of 1.6, the macrostep height is minimum (Figure 

5.11). On the other hand micro step density increases when C/Si ratio is varied from 0.9  

 

 
Figure 5.10 AFM images of the epilayer sufaces (4° off cut) for varoius C/Si ratios 

showing variation of step bunching on the surface. 1D analysis (white line at the top of 

each images) of these surfaces are shown in Figure 5.8. 

 

Table 5.3 AFM surface analysis of epilayers grown on different off cuts. 

C/Si ratio  0.3  0.6  0.9  1.4  1.6  

Step density / 20um  9  17  6  10  13  

Step height (nm)  8  5  10  5  4  

Roughness 1.6 1.4 1.8 1.6 1 

 

to 1.6. At a C/Si ratio of 1.6 (Table 5.2), even though microstep density increases but the 

surface roughness reaches minimum. This is due the reduced macrostep height (reduced 

step bunching) at a C/Si ratio of 1.6 (Figure 5.11). Variation of surface roughness based 

on the macrostep heights and variation of the roughness based on only the microstep 

C/Si 0.3 C/Si 0.6 C/Si 0.9 C/Si 1.4 C/Si 1.6

RMS 

1.6nm 

RMS 

1.8nm 

RMS 

1.6nm 

RMS 

1nm 

RMS 

1.4nm 
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height for the variation of C/Si ratios are shown in Fig 5.12 (a and b). Microstep heights 

were found to be close to the unit cell height for all the C/Si ratios. However, macrostep 

heights were varied strongly with the variation of the C/Si ratios. From the surface study 

and relation of microsteps and macrosteps to the C/Si ratios (Figure 5.11 and 5.12) it can 

be understood that surface kinetics on the low off cut sample is extremely complicated 

and difficult to explain. Similar results are also observed for 4° off cut substrate in. W. 

Chen et al. (W. Chen & Capano, 2005) put an effort to explain the step bunching 

behavior of the surface found using 4° off cut substrates as following.
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.

Actual Surface 

Macro step (Fitted) 

Figure 5.11 1D analysis of the epilayer surface for various 

C/Si ratios grown on 4° off cut substrates showing the 

variation of macro and micro steps as a function of C/Si ratios 

1
4
0
 1
4
0

 



www.manaraa.com

 

141 

 

 

 

 

Figure 5.12 a) Roughness measured based on the macrostep peak and troughs (calculated 

manually) for different C/Si ratios. b) Roughness measured based on the microstep peaks 

and troughs (calculated manually) for different C/Si ratios.  These figures demonstrates 

that macrostep height is a stronger function of C/Si ratio than the microstep height. 

 

The reason for higher step bunching on lower off cut substrates are discussed in 

Chapter-4. Step bunching was explained by the Schwoebel effect. Step bunching is a 

process through which the surface energy is lowered during the growth. The elastic 

potential between two steps can be found from the equation (Marchenko & Parshin, 

1980) as following. 

     
       

  
         

 

                                                            (5.2) 

Where E = Young’s modulus; Σ = Poison’s ratio; β = surface tension at steps, a = step 

height; x = distance from the step. According to Equation 5.2, crystal surface has a 

varying elastic potential and the surface of a certain off cut substrate has a certain 

periodic elastic potential on the surface present prior to the growth. This potential 

changes dynamically during the growth based on various growth conditions (e.g. C/Si 

ratio) which results in varying step bunching. It was found that when bunched step grows 
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above a certain height then the step interaction between the macrostep and the microsteps 

may turn from repulsive to attractive interaction (Kukta, Peralta, & Kouris, 2002) and 

their dynamics may change during the growth. Hence prediction of step bunching is 

extremely complex as it varies during growth due to various growth conditions and may 

take unpredictable form after the growth. Variation of step bunching due to variation of 

C/Si ratio (Figure 5.7 and 5.8) indicates complex variation of step interactions during 

growth.  

As the discussion in chapter 4, etch rate increases at lower C/Si ratio due to lower 

concentration of propane. In chapter 4 we have shown that, similar to the growth, step 

bunching may also occur due to etching.  Hence, both etching and growth may influence 

the step bunching which are strong functions of C/Si ratio. A deeper investigation is 

required to predict the step dynamics of epitaxy on lower off cut substrates during 

growth, which might become useful to optimize the process to achieve good epilayer 

surface on low off cut substrates. It is interesting to see that no step-cross over was 

observed for these epilayers unlike reported in (W. Chen & Capano, 2005). 

  

5.3.3 GROWTH ON VICINAL ON-AXIS (~0.5º OFF CUT) SUBSTRATES 

 

Growth with polytype uniformity was only achieved at a C/Si ratio of 0.3 with a 

growth rate of ~4µm/hr. High amount of 3C inclusion was observed above a C/Si ratio of 

0.3. The reason of increased 3C growth at higher C/Si ratio was assumed to be due to the 

combining effect of lower etch rate and higher growth rate at higher C/Si ratios. As 

shown in Figure 5.13, the growth is step mediated even for ~0° off cut substrates proving 

that steps are present even for the ~0° off cut substrates used in the experiments. From 
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the step analysis (terrace width = 140nm and height = 1 nm found from etched sample 

shown in Chapter 4) the off cut was found to be 0.5°. AFM images of the epilayer (Figure 

5.13) shows steps on the epilayer to be parallel to each other. Typically no step crossing 

was observed for the epilayer grown at C/Si ratio of 0.3. Surface was mirror like for this 

growth. When the C/Si ratio was increased further, the epilayer surface degraded with 

faceted structures (Figure 5.13c) and good 4H growth is lost discussed in details earlier  

 
 

 
 

Figure 5.13 (a) AFM images of the epitaxial growth on the vicinal on-axis surface at a 

C/Si ratio of 0.3. b) 1D scan analysis of the surface along [11  0]. (b) Nomarski images of 

the surface at different C/Si ratios. 

by Raman analysis. A 4H/3C peak ratio was found to be ~97, indicating remarkably good 

polytype uniformity for the epilayer grown at a C/Si ratio of 0.3. Surface roughness was 

a) b) 
Z (µm) 

x (µm) 
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found to be ~3nm (RMS). Macrosteps were observed for these epilayers with step height 

of 10nm compared to the microstep height of 1nm (Figure 5.13 b). 

In summary, in this chapter we have discussed some critical issues of epitaxial 

growth on various off cut substrates using SiF4 gas for various C/Si ratios. A very flat 

doping concentration versus C/Si ratio was found and shown to be an advantage to 

achieve doping uniformity over a large diameter substrate. Growth rate increases with 

increasing C/Si ratio (at fixed TFS flow rate) similar to the growth rates found using DCS 

unlike silane. Improved polytype uniformity was observed for lower off cut substrates 

(only low C/Si ratio for on axis). We postulate that high etch rate using SiF4 during 

growth suppresses 3C nucleation on lower off cut substrates. While no significant 

variation of surface morphology was observed for the 8° off cut substrates, a complex 

variation of step bunching was observed for 4° off cut substrates which was due to the 

effect of both varying etch rates and growth rates at different C/Si ratios. Good epilayer 

growth on on-axis substrate was shown using SiF4 gas at a C/Si ratio of 0.3. The polytype 

uniformity degraded dramatically above a C/Si ratio of 0.3 and assumed due to the 

combined effect of both reduced etch rates and higher growth rates at higher C/Si ratios. 

 

5.3.4 SELECTION OF THE BEST C/Si RATIO FOR OPTIMUM GROWTH  

Selection of the best C/Si ratio should be considered from (1) surface morphology 

(roughness, step-bunching, waviness, measured by AFM); (2) crystalline quality (XRD) 

and polytype uniformity (Raman); (3) doping (4) defects control (e.g., C/Si ratio may 

affect BPD conversion and growth pits generation.); (5) growth rate. 
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It is very important to select the best C/Si ratio for the growth based on the results 

presented earlier. For 8° off cut substrates, the main concern is the growth rate since 

surface morphology is not varied with C/Si ratio significantly. Hence, a C/Si ratio of 1.6 

will be preferable for 8° off cut substrates since at this C/Si ratio the growth rate is 

higher. At higher C/Si ratios, the epilayer is p-type. However, the desired n-type doping 

can be achieved by adding nitrogen in the reactor.  

In the case of 4° off cut substrates, both the surface morphology and growth rates 

are functions of C/Si ratios (where doping concentration can be adjusted by adding 

dopant). In general, the step bunching was found higher (with increased surface 

roughness) at lower C/Si ratios. Lowest surface roughness was achieved at a C/Si ratio of 

1.6 (Figure 5.9a) with reduced macrostep height (Figure 5.9b). Raman spectra also 

demonstrate good polytype uniformity (Figure 5.5). Hence, a C/Si of 1.6 can be 

considered the optimized C/Si ratio for growth using 4° off cut substrates. 

When on-axis (~0°) substrates were used, the choice of selecting C/Si ratio is 

limited. Step flow growth was found at a low C/Si ratio of 0.3. 

We describe here the optimized condition where the doping concentration is 

ignored. Addition of nitrogen (Al or B for p-type) to achieve a desired doping 

concentration may require further optimization to achieve the best epitaxial layer.  

 

In summary, in this chapter the detailed study is presented for the epilayer growth 

using SiF4 gas. Growth rates, doping concentration, surface morphology etc. in relation to 

C/Si ratios was discussed. Growth rate was found to be increased at higher C/Si ratios 

indicating C-dependent growth rate. Doping concentration was found to be less 
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influenced by the C/Si ratio for SiF4 than that of found using DCS. We concluded that F 

behaves as an acceptor in SiC epi growth if incorporated and reduces the n-type doping 

concentration. Lower doping concentration was easily achievable using SiF4 over a 

longer range of C/Si ratios and better uniformity using SiF4 compared to DCS. Higher 

polytype uniformity was found for the epilayer grown on lower off cut substrates when 

step flow growth (2D) took place. Surface morphology improved at higher C/Si ratios for 

the epilayer grown on 4° off-cut substrates compared to the epi grown on 8° off cut 

substrates. 4H-SiC growth was observed for ~0° off cut substrates only at a C/Si ratio 

below 0.3. At higher C/Si ratio (>0.3), 3C growth took place on the epi grown on ~0° 

substrates. Finally, based on the results presented in this chapter, optimized condition for 

the growth using SiF4 was defined. 
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SUMMARY AND FUTURE PROSPECT 
 

Silicon carbide (SiC) epitaxy is more challenging compared to other common 

semiconductor epitaxial growths due to the high temperature associated with the SiC 

growth. In this dissertation we have shown that at this high temperature condition 

conventional silicon gas precursor gases (e.g. silane and dichlorosilane) decompose very 

early during its flow towards the substrate. This early decomposition of silicon precursor 

induces excessive silicon gas phase nucleation in the reactor and generates particulate 

which eventually soils the epitaxial growth. We have first provided a scientific study of 

parasitic deposition in this work. In this work, we first proposed tetrafluorosilane gas as a 

silicon precursor suitable for high temperature SiC epitaxy. We provide evidence through 

our experimental results that the highest Si-X bond strength (highest dissociation bonding 

energy) of SiF4 suppresses silicon gas phase nucleation and parasitic deposition in a best 

possible way.  

Previously fluorosilane was considered not to be “a gas of choice” for SiC epitaxy 

due to its very strong Si-F bond (Pedersen et al., 2007), though, no research has been 

conducted previously for fluorosilane gases for SiC homoepitaxy. The Si-F bond in SiF4 

is indeed much stronger than its nearest halosilane bond Si-Cl (565 vs. 381 kJ/mol) in 

chlorosilanes. However, contrary to previous postulation we proved that, in the presence 

of propane and at high temperature condition required for SiC epitaxy, in fact
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 fluorosilane gas is a good choice for high temperature SiC epitaxial growth due to its 

strongest Si-X bond.  

Silicon carbide epitaxial growth using CVD process is about 30 years old. The 

question arises that “Why SiF4 was not paid much attention for SiC growth previously?” 

Historically, SiC epitaxy mainly took silicon CVD technology as the guide for its 

developments (Pedersen et al., 2011). Silicon industries commonly use chlorosilane gases 

(e.g. dichlorosilane or DCS) as silicon precursor for Si crystal growth. Fluorosilane gas 

cannot be used for Si growth since it is a Si etchant. Further for Si epitaxy, high bond 

strength is not essential since silicon growth temperature is much lower than the silicon 

carbide growth temperature. Hence, taking silicon CVD as guidance for silicon carbide 

CVD, fluorosilane gas was mainly left unattended and unexplored for silicon carbide 

epitaxy. In this research work we first report homoepitaxial growth using fluorosilane gas 

and provide detailed experimental and theoretical results and thus consummate the 

research for silicon carbide epitaxy using essential halosilane gases.  

During the course if the research it was questioned by the critiques many times 

that why it is necessary to use a new gas since it is already reported high quality, thick 

epitaxy using chlorosilane gases exists. It has to be mentioned that despite numerous 

reports on very high quality thick epitaxy by various reports, commercially, high quality, 

cost effective thick epilayer is still not available. In existing literatures, no systematic 

study of parasitic deposition or reactor environment due to the growth were present. 

Hence despite reports of numerous high quality thick epitaxies, it is not possible to know 

that if those processes are practical in term of commercial production. In research lab it is 

fairly acceptable to grow few epilayers and discard the reactor parts heavily deposited 
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with parasitic materials, since cost is not an important factor for few growth runs. 

However, for commercial production, it is essential to grow bulk amount of epilayers in 

the number of millions. These epilayers have to be produced repetitively without 

increasing the production cost. Ensuring the cleanliness of the reactor parts with reduced 

parasitic deposition is a big consideration and a critical issue for industrial production, 

specifically for high temperature SiC CVD. Hence we argue that despite the available 

reports of high quality silicon carbide epitaxy by using chlorine precursor, the necessity 

of finding a new precursor gas for high quality epitaxy is not diminished. In this research 

we included two essential aspect of this novel fluorosilane gas.  

-Study of silicon carbide growth using SiF4 

-Study of etching using SiF4 

Unlike other silicon precursor, etching is an essential part of SiF4 chemistry and it 

is necessary to consider the etching effect of SiF4 during the epitaxial growth as well. In 

this dissertation, we show tetrafluorosilane (SiF4) to be an efficient SiC etchant of silicon 

carbide. We explain the silicon removal process from SiC surface during etching by SiF4 

based on the Gibbs free energy (ΔG) calculation of various etching reactions. It is shown 

that etching of Si from the SiC surface is favorable by SiF4, whereas, comparably, 

etching of C by SiF4 is much unfavorable. Hence SiF4 selectively etches Si whereas H2 

removes C from surface. This selective etching of Si by SiF4 may also find interest in 

future for other applications (e.g. epitaxial graphene growth by a precursor gas, which 

will be shown soon in a future publication in details) and may open new possibilities for 

large area, controlled graphene epitaxial growth (Appendix B).  
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Our research indicates that by using SiF4- epitaxial growth, etching and even 

graphene growth is possible by using the same gas- thus gives a new dimension in silicon 

carbide epitaxy with new opportunities for the simplification of process related steps with 

a much greater controllability and flexibility for new applications. 

In this research we conducted study of SiF4 precursor for silicon carbide growth 

and etching. However, still the process needs further development as required for any 

new technology. Based on the knowledge gained from this research, the following future 

work is proposed. 

 

STUDY OF THE CHEMICAL ROUTE/REACTION FOR THE GROWTH 

The chemical process of silicon carbide growth using SiF4 is much different than 

the chemical processes associated with the CVD growth found using chlorosilane gases. 

We believe that growth surface plays an important role for the decomposition of the gas 

since too strong Si-F bond does not decompose in the hydrogen gas stream even up to a 

temperature of 2000°C whereas the growth temperature is around 1600°C. A scientific 

investigation is required to find the exact chemical route for the growth using SiF4  

 

DEEPER INVESTIGATION OF FLUORINE INCORPORATION DURING 

GROWTH 

We have performed an XPS (X-ray photo electron spectroscopy) analysis of an 

epilayer which indicates F incorporation (0.55%) on the surface of the epilayer. However 

it indicates only the result from the surface which might represent only the contaminated 

surface. A SIMS (Secondary Ion Mass Spectroscopy) depth profile study is essential to 
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know the actual F content in the material for various growth conditions (e.g. C/Si ratios, 

temperatures, pressures etc). 

 

STUDY OF DOPING CONCENTRATION 

One of the most important and interesting aspects of the growth using SiF4 is the 

relation of doping concentration to C/Si ratio variation as shown and described in 

Chapter-5. Further investigation is required to know the reason behind the flat graph 

found for doping concentration vs. C/Si ratio for SiF4 compared to DCS or silane. 

 

GROWTH ON ON-AXIS SUBSTRATE 

We present only preliminary results for on-axis growth in this research. However, 

detailed study is required for the growth on on-axis substrate using SiF4 gas.  

 

DEVICE CHARACTERIZATION 

Preliminary I-V characteristics for the Schottky diodes fabricated on the epilayer 

grown using SiF4 demonstrated improved device performance in terms of the uniformity 

of the Schottky barrier height over the sample. However, a detailed study is needed to be 

conducted in future to compare the electrical performance of devices fabricated on 

epilayer grown on SiF4 to the epilayer grown using conventional gas for reverse leakage 

current, forward voltage drop, break down voltage, reliability etc. 

 

 Finally, we conclude that, study of a new precursor gas is always 

beneficial for the CVD growth community since it gives them wider options and more 
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flexibility to grow epilayers by different methods. We believe our contribution to the 

silicon carbide community by this research is the introduction of the strongest Si-X bond 

fluorosilane gas for epitaxial growth of silicon carbide and demonstration of its 

advantages. The use of fluorosilane gas gives the community to take the SiC growth 

forward beyond the regime of conventional silicon CVD. Silicon carbide epitaxy is 

significantly different than silicon epitaxy due to much higher temperature associated 

with it and has to be handled differently, and different precursor choice may find benefit. 

We believe the research presented in this dissertation will establish the foundation of the 

fluorinated precursors for the high temperature SiC epitaxy to take it to the next step for 

high quality material growth needed for high power, next generation electronics.  
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APPENDIX A --SILICON CARBIDE CRYSTAL PLANES AND 

DIRECTIONS 
 

 

Figure A.1 Crystal directions on the basal plane of hexagonal SiC crystal 

 

 

 

 

 

 

 

 

 

Figure A.2 Various crystal planes of hexagonal SiC crystal 
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APPENDIX B – EPITAXIAL GRAPHENE GROWTH BY SiF4 GAS 
 

 

 

Figure B.1 Steps of the graphene growth by TFS (SiF4) gas n an inert ambient. 
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APPENDIX C – SAFETY ISSUES USING SiF4 GAS 
 

 

Safety is the most important factor in any circumstances. CVD furnace, especially for 

SiC epitaxy, where temperature is high and flammable gases are flowing, the situation is 

particularly dangerous and extreme care has to be taken in order to prevent any life 

threatening accident. For any other gases, TFS based CVD is also needed to be handled 

with extreme care.  Some important precautions are presented below. 

 

1. CVD furnace should never be unattended during the growth. 

2. Reactor should be pumped for high vacuum (~10
-6

 torr) before starting the 

growth. 

3. H2, HF, DCS etc. gas sensors should be checked before starting the growth. 

4. Proper filters to trap by product gases HCl, HF (if any) needed to be used. 

5. Reactor must be pumped and flushed properly before unloading the sample. For 

this process overnight pumping (turbo pump) is recommended.  

6. Graphite parts must be baked at 750°C - 1000ºC to remove residual moisture. 

7. Exhausted pumps should be regularly checked for operation. 

8. Safety equipments, e.g. fire extinguisher, emergency stop switch etc. should be 

checked before starting the growth process.  

9. Water flow for the reactor cooling has to be ensured before starting the growth 

during the whole process. 
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APPENDIX D – DRAWING OF SPLIT TUBE ASSEMBLY 

 
Figure D.1 Sketch of the injector. 
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Figure D.2 Sketch of injector split tube. 
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Figure D.3 Sketch of top plate of the gas injector. 
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APPENDIX E – CHEMICAL VAPOR DEPOSITION MANUAL
1
 

 

 
In electronic device preparation it is required to grow a thin layer on 

semiconductor substrate. Chemical vapor deposition or CVD is a widely used technique 

to grow epilayer on semiconductor substrates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.1: Block diagram of CVD system 

 

The goal of CVD is to grow a layer on top of the substrate by replicating substrate’s 

atomic arrangement. It uses source gases which contains elements of the desired material. 

                                                 
1
 This section is adapted from Appendix A (Shrivastava, 2008), originally written by the candidate (group 

member) for the same CVD reactor. Please note that reactor geometry, processes are modified time to time 

and this manual may not be directly followed. 
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Source gases are carried into the reaction chamber by carrier gas H2. Precise control of 

temperature, pressure and their respective duration and substrate position are required 

during the whole process. 

Basic components of a CVD system are 

1. Furnace 

2. Vacuum pumps  

3. Temperature controlling facilities. 

4. Gas flow controlling facilities. 

5. Pressure controlling facilities. 

6. Computer based control system. 

Operation of a CVD can be dissected into four basic parts 

1. Temperature Ramp up 

2. Hydrogen Etching  

3. Growth at High temperature 

4. Temperature ramp Down 
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COMPONENT LIST: 

RACK-1 

 

1. Temperature sensor 

2. Turbo pump controller unit 

3. Cold cathode pressure measurement unit 

4. MKS multi gas controller 

5. MKS 600 series pressure controller 

6. Smart UPS 1400 

7. Smart UPS 2200  

8. Gas flow indicator panel 

 

 
 

Figure E.2 CVD reactor system used  for the experiments.  

 

RACK-2 

 

1. MFC controllers,  

2. Electrical valves 

3. Pipe connections 

4. Manual valves 

Rack-2 

Rack-4 

Inverter 

Rack-3  

Rack-1 
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RACK-3 

 

1. Pyrometer 

2. Reactor furnace 

3. Gas nozzle 

4. Hot wall 

5. Susceptor 

6. Glass rod sample raiser 

7. Turbo pump 

8. Rotary vane pump 

 

 

 

 
Figure E.3 Rack-1, Rack-2 and Rack-3 of the CVD system at USC 
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RACK-4 

 
9. PC with interfaces 

10. Lab CVD software 

11. MKS software 

12. Labview Recipe maker 

13. Labview Recipe viewer 

 

 

GAS TANK CABINET 

 

1. H2 Gas cylinder 

2. SiCl2H4 (DCS) gas cylinder 

3. SiF4 (TFS) gas cylinder 

4. Ar gas cylinder 

5. SiH4 gas cylinder 

6. C3H8 gas cylinder 

7. Pressure controllers 

 

 

SAFETY DEVICES 

 

1. H2 detectors 

2. SiCl2H4 gas detector 

3. SiH4 gas detector 

4. C3H8 gas detector 

5. HF gas detectors 
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SOFTWARE (LABVIEW) 

 

1. CVD (LABVIEW) 

 

CVD program which is used to control different electrical valves for different stages by 

graphical interface. A recipe can be loaded and run for automatic CVD process 

 

 
Figure E.4: CVD program by lab view 

 

 

2. MKS CONTROLLER 

 

This is the software for MFC (Mass flow controller). MFCs inside rack-2 are controlled 

by this software which determines gas flows during the process. 

 

 
Figure E.5: MFC software (MKS controller) 
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3. PROFILE VIEWER 

 

Profile viewer is Labview software which is used to tweak existing CVD recipes. It can 

only change gas flow, temperature, duration of the stages. 

 

 

 
Figure E.6: Profile viewer (Labview) 

 

 

 

 

 

 

STEP BY STEP GROWTH PROCESS 

 
 

 

SAMPLE CLEANING AND PLACEMENT 

 

1. Clean the sample (in boiling TCE, Acetone, Methanol, DI water, Aqua regia, DI 

water, HF, DI water, ultra-sonic cleaning) 
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2. Clean the susceptor. 

3. Clean air nozzle. 

4. Put the sample on susceptor manually, very gently on the susceptor. 

5. Put gas nozzle and hotwall on top of the susceptor. 

6. Close the cover and tight up the screws. 

 

 
Figure E.7 Simplified block diagram of CVD system. 

 

 

 

 

SYSTEM EVACUATION: LOW VACUUM 

 

 

1. Slowly adjust MKS pressure controller (Figure E.8) and reduce the pressure to 

0torr. 

2. Open MKS software and click run button. (Figure E.5) 
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3. Make H2 independent (Figure E.5). 

4. Update each MFC (from software) and open it for flowing/pumping down by the 

maximum flow rates SLM/SCCM for the respective gases (Figure E.5). 

 

 

 

 

 

 

Figure E.8: pressure controller front   panel. 

 

 

 

 

5. Open CVD program (Figure E.4); open drain valve, reactor valve and second line 

of all gases. The second lines are connected to the reactor while first lines are 

connected to vent.  

6. Wait until pressure reaches around 1 torr.  

7. Press “Close” button in MKS unit (Figure E.10). 

8. Open gate valve. Wait until pressure reaches ~0.5 torr. 

 

 

SYSTEM EVACUATION: HIGH VACUUM 

 

 

1. Turn on turbo-V 300HT controller by pressing start button in Varian turbo pump 

control panel (Figure E.9). 

Open button 

(100% open) 

Close button 

(100% close) 

Pressure control knob Press to view set point 

Set point 

selection 
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Figure E.9: Varian turbo pump control panel 

 

 

 

 

2. Turn on high vacuum toggle valve after 10 minutes (Figure E.10). 

 

 

 

 

 

Figure E.10: Cold Cathode Pressure unit. 

 

3. Wait until the vacuum reaches around 5e-6 torr (display unit in Figure E10 or any 

other pressure monitor unit). 

4. Press ‘log’ button in Labview software (Figure E4) and provide all the necessary 

information regarding growth such as temperature, C/Si ratio etc. 

5. Connect pyrometer. 

Start/Stop button 

RPM/Temp/Power 

viewer button 

High vacuum 

display unit 

High vacuum 

On/Off toggle 

switch 
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6. Turn on cooling water (20 psi respectively), cooling fan and inverter. 

GAS FLOW: INCREASING AMBIENT PRESSURE FOR GROWTH 

 

1. Open H2 cylinder main valve in the gas cabinet (Figure E.13) 

2. Open MKS controller software (Figure E.5). 

3. Close all lines except H2 in MKS software. 

4. Update for H2 in MKS software by 0.5 slm.  

5. Open H2 reactor line. 

6. Open H2 main valve and wait till flow becomes stable in Figure E.11. 

 

 

 

 

 

Figure E.11: Gas flow meter display unit. 

 

7. Close gate valve in Rack-3. 

8. Turn off turbo pump (Figure E.9). 

9. Close cold cathode pressure gauge (Figure E.12). 

10. Open second line first and then the first line of H2 to pass gas through reactor 

(Figure E4). 

11. Wait until pressure reaches 300 torr (Check display in Figure E.8) 

Channel number 

Gas flow rate (SLM) 



www.manaraa.com

 

177 

 

12. Gradually increase H2 flow rate by increasing the flow in increment of 0.5 slm in 

MKS controller software up to 10 slm. 

 

 

STARTING THE CVD PROCESS 

 

1. Check all the safety issues such as gas leak, cooling system etc. Close the furnace 

protective door. 

2. Open Propane and Silane/DCS/TFS gas cylinders main valves. 

3. Stop and close MKS software (Figure E.5). 

4. Click ‘manual control’ in Labview
TM

 and a window pops up (Figure E4). 

5. Select desired recipe and load it.  It will give a number. Press OK. 

6. Close the vent knob in the rack 3. 

7. Wait until the gas flow is stable and then open the vent knob inside the rack 3. 

8. Observe temperature, pressure, gas flow etc as process goes on. 

 

 

 

 

Figure E.12: Temperature sensor display. 

 

9. Wait until it reaches growth temperature (usually 1550-1600C).  

Temperature Setpoint 

Actual temperature 
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10. Wait until process stops. 

11. Close H2, Propane and Silane/DCS/TFS gas cylinders. 

12. Wait for at least 20 minutes after all the processes stop. 

13. Turn off cooling water, cooling fan, inverter switches. 

 

 

SYSTEM EVACUATION : LOW VACUUM 

 

1. Slowly reduce pressure by adjusting MKS pressure controller (Figure 8). 

2. Open MKS software (Figure E.5) 

3. Make H2 Independent (Figure E.5). 

4. Open all the gas lines in Figure 4 let them flow through vent. 

5. Purge all the gas lines by Ar for 3 times. 

6. Press ‘Close’ button in MKS unit (Figure E.11). 

7. Open gate valve to let backing pump pumps more up to ~0.5 torr. 

 

 

SYSTEM EVACUATION: HIGH VACUUM 

 

1. Turn on turbo pump. 

2. Wait until it reaches around 5e-6 torr. 

 

BRINGING THE SAMPLE OUT 

 

1. Open the lid cover very slowly by unscrewing the bolts. 

2. Bring the gas nozzle out very carefully so that it does not touch the hot wall. 
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3. Bring out the hotwall. 

4. Bring the sample out carefully. 

5. Close the lid again. 

  

 
     

 

Figure E.13: Gas cylinder valves and meters. 

 

    Gas outlet pressure meter  

Cylinder Pressure Meter 

Cylinder knob 

Middle gauge (Pressure 

 control knob) 
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